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Abstract. Complementary Approximate Reachability (CAR) is a lead-
ing SAT-based model checking algorithm that combines under- and over-
approximating state sequences to verify safety properties. However, its
performance is hindered by redundant computations caused by the fixed-
order traversal of the under-approximating sequence. To address such a
limit, in this paper, we propose a dynamic traversal strategy to opti-
mize CAR. By identifying common inefficiency patterns, we introduce
heuristic methods and a scoring mechanism to prioritize states that are
more likely to advance verification. We also prove that the correctness
of the CAR algorithm can be preserved while exploring only a subset
of the U-sequence, enabling partial traversal strategies that significantly
reduce computational overhead. Experimental results demonstrate that
our approach could solve 10% more cases than the previous best CAR
implementation [17] and outperform state-of-the-art IC3 model check-
ers, e.g., IC3-REF [4]/11]. Our method bridges the gap between CAR’s
theoretical potential and practical scalability, offering a more efficient
solution for industrial-scale verification.

Keywords: Model Checking, Formal Verification, Complementary Ap-
proximate Reachability

1 Introduction

Model checking has long been a cornerstone of formal verification, offering rigor-
ous guarantees for the correctness of both hardware and software systems. Given
a system model M and a temporal property P, model checking automatically
verifies whether all behaviors of M satisfy P. Despite its widespread adoption,
scalability remains a critical challenge, particularly for large, industrial-scale
systems where the state space grows exponentially. In these settings, traditional
methods often struggle to meet the time and memory constraints required for
practical use, making the quest for scalable, efficient model checking methods a
vital area of research.
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State-of-the-art safety model checking techniques, including Bounded Model
Checking (BMC) [2,[3], Property Directed Reachability (PDR/IC3) [4,9], and
Complementary Approximate Reachability (CAR) [15], rely fundamentally on
SAT solvers but adopt divergent strategies. BMC prioritizes shallow bug detec-
tion through bounded path exploration, offering speed at the cost of incomplete-
ness. In contrast, PDR and CAR provide completeness but are generally slower
for shallow bug-finding. Therefore, a combination of techniques is often used
depending on the verification task.

Among these, the CAR framework uniquely combines over-approximation
(O-sequence) and under-approximation (U-sequence), efficiently narrowing the
search space and accelerating the verification process through a balance of bug-
finding and proof capabilities. However, its practical scalability remains con-
strained by a rigid traversal of the U-sequence. This fixed-order strategy forces
CAR to process states sequentially, irrespective of their individual utility, This
results in two predominant inefficiency patterns: (1) redundant states, where
multiple states generate identical unsatisfiable cores (UCs), and (2) misleading
states, where a number of states repeatedly fail to transition into deeper O-
frames, yet still consuming computational cycles due to their position in the
traversal order. Consequently, even state-of-the-art implementations struggle
with large-scale systems.

While prior optimizations like clause generalization [17] and assumption or-
dering [6H8] have sought to mitigate some of CAR’s inefficiencies, they fail to
address the core issue, i.e., the inflexible traversal order. In this paper, we propose
a dynamic traversal strategy to improve CAR ’s performance by addressing these
inefficiencies. Our approach introduces two key heuristics: PickUC, which priori-
tizes states that contribute more to narrowing the O-sequence, and PickChildren,
which favors states with higher branching factors to avoid unproductive paths.
Both heuristics are integrated into a unified scoring mechanism that ranks states
based on their potential to advance the verification process. These strategies are
part of a broader optimization we term Dynamic Traversal (DT), which refines
the traversal of the U-sequence.

While reordering improves state prioritization, it still involves full traversal of
the U-sequence, meaning that even lower-priority states are still explored. How-
ever, we demonstrate that full traversal is not necessary for correctness. Specifi-
cally, we prove that CAR can retain its correctness while exploring only a subset
of the U-sequence. Building on this insight, we propose a further optimization of
dynamic traversal: instead of fully traversing, we selectively explore only a subset
of states. This approach, which we call CAR-DT (CAR with the dynamic traver-
sal optimization), focuses on the most promising states and therefore reduces
unnecessary exploration and accelerating convergence, especially for large-scale
verification tasks.

We implement our approaches on the best variant of CAR and conduct an
extensive evaluation using all the 318 benchmarks from the HWMCC’24 compe-
tition [10] to assess its performance. The experimental results demonstrate that
CAR-DT outperforms the original CAR, solving 13 more out of 145 cases. In com-
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parison to state-of-the-art tools like IC3-REF [4,[11], CAR-DT also demonstrates
superior performance. These improvements bridge the gap between CAR’s the-
oretical potential and its practical applicability, offering a scalable and efficient
solution for industrial-scale verification tasks.

Our contributions can be summarized as follows:

— Prioritized Traversal Strategy: We propose a prioritized traversal strat-
egy that optimizes U-sequence processing by prioritizing states based on
their potential to refine O-frames or explore new transitions.

— Theoretical Insight: We prove that CAR’s correctness is maintained while
exploring only a subset of the U-sequence. This insight challenges the con-
ventional wisdom that full traversal is necessary for correctness and lays the
foundation for more efficient exploration strategies.

— Dynamic Traversal: Based on the theoretical insight, we introduce the
Dynamic Traversal optimization, which focuses on high-potential states, re-
ducing computation and accelerating convergence.

— Empirical Validation: We implement CAR-DT on the best variant of CAR
and validate it on 318 benchmarks from the HWMCC’24 competition. Our
results show that CAR-DT outperforms the original CAR and state-of-the-art
tools like IC3-REF, offering a scalable solution for large-scale verification.

The remainder of this paper is organized as follows: In Section [3| we provide
motivating examples. Section [f] then outlines our methodology, followed by the
experimental results presented in Section [5}

2 Preliminaries

2.1 Boolean Transition System

A Boolean transition system Sys is defined as a tuple (V,I,T), where V is a set
of Boolean variables, and each state s is a truth assignment to variables in V.
I is a Boolean formula corresponding to the set of initial states. The transition
relation T is a Boolean formula over V U V', where V' is the set of primed
variables. A state so is a successor of state sy iff 3 U s, & T, which is also
denoted by (s1,s2) € T. A path of length k in Sys is a sequence sy, so, . .., s of
states connected by transitions. A state ¢ is reachable from s in k steps if there
is a path of length k from s to t. Let S be a set of states in Sys. We denote the
set of successors of states in S as R(S) = {t | (s,t) € T, s € S}. Conversely, we
define the set of predecessors of states in S as R™1(S) = {s | (s,t) € T,t € X}.
Recursively, we define R(S) = S and RY(S) = R(R*"1(S)) where i > 0, and the
notation R~*(S) is defined analogously. In short, R*(S) denotes the states that
are reachable from S in i steps, and R~¢(S) denotes the states that can reach S
in ¢ steps.
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2.2 Safety Model Checking and Reachability Analysis

Given a transition system Sys = (V,I,T) and a safety property P, which is a
Boolean formula over V| a model checker either proves that P holds for any state
reachable from an initial state in I, or disproves P by producing a counterexam-
ple. In the former case, we say that the system is safe, while in the latter case,
it is unsafe. A counterexample is a finite path from an initial state s to a state ¢
violating P, i.e., t € =P, and such a state is called a bad state. In symbolic model
checking, safety checking is reduced to symbolic reachability analysis |2]. Reach-
ability analysis can be performed in forward or backward search. Forward search
starts from initial states I and searches for reachable states of I by computing
Ri(S) with increasing values of i, while backward search begins with states in
—P and computes R™*(S) with increasing values of i to search for states reach-
ing I. Table [I] gives the corresponding formal definitions. For forward search,

Table 1. Standard reachability analysis.

Forward Backward
Base Fo=1 Bo =P
Induction  Fi11 = R(F;) Bit1 = R™Y(By)
Safe Check  Fit1 C U< Fj Bit1 € Uo<j<; Bi
Unsafe Check F; N =P # () B,NI#D

F; denotes the set of states that are reachable from I within 7 steps, which is
computed by iteratively applying R. At each iteration, we first compute a new
F;, and then perform safe checking and unsafe checking. If the condition in the
safe/unsafe checking is satisfied, the search process terminates. Intuitively, un-
safe checking F; N =P # () indicates that some bad states are within F; and safe
checking F;; C Uog j<i F}; indicates that all the reachable states from I have
been checked and none of them violate P. For backward search, the set B; is the
set of states that can reach =P in ¢ steps, and the search procedure is analogous
to the forward one.

2.3 Complementary Approximate Reachability (CAR)

CAR is a recently proposed SAT-based model checking algorithm inspired by
IC3/PDR [4,9]. CAR performs reachability analysis in both forward and back-
ward directions by maintaining over- and under- approximate state sequences,
which is defined as follows:

Definition 1 (Over/Under Approximating State Sequences). Given a
transition system Sys = (V, I, T) and a safety property P, the over-approximating
state sequence O = Og,O1,...,0; (i > 0), and the under-approximating state
sequence U = Uy, Ui, ..., U; (j > 0) are finite sequences of state sets, defined as
shown in Table[1, where k denotes the frame index in the induction process, and
k>0.
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Table 2. Definition of over-/under-approximate state sequences in CAR

O-sequence U-sequence

Base: Op = -P Up=1
Induction: Ort1 D R7YOr)  Uks1 C R(Us)
Constraint: O NI =10 _

Algorithm 1: Complementary Approximate Reachability (CAR).

Input: A transition system Sys = (V,1,T) and a safety property P
Output: ‘Safe’ or (‘Unsafe’ + a counterexample)

1 if SAT (I A —P) then return Unsafe
2 Uyp:=1,0p:=-P
3 while True do
4 Otmp =l
5 while state :=pickState (U) is successful do
6 stack =0
7 stack.push (state, |O| — 1)
8 while stack.size # 0 do
9 (s,l) :== stack.top() // Assume s € U;
10 if | <0 then return Unsafe
11 if isBlockedAt (s, [) then
12 backtrack (s,l)
13 Continue
14 if SAT (s,T A O;) then
15 t := getModel ()
16 Uj+1 = Uj+1U t // Widening U
17 stack.push (t,l-1)
18 else
19 stack.pop ()
20 uc = getUC()
21 if I+ 1< |O]| then Oi41 := O41 A (—uc )
22 else O¢mp = Omp A (—uc)
23 backtrack (s,l)
24 if 3i > 1 s.t. (Up<;<; O5) 2 Oiy1 then return Safe
25 Add a new state-set to O and initialize it to O¢mp

These sequences determine the termination of CAR as follows:

— Return ‘Unsafe’ if 3i - U; N =P # ().
— Return ‘Safe’ if 3i > 1- (U;‘:O 0;) 2 Oit1.

CAR can be implemented in both forward (ForwardCAR) and backward
(BackwardCAR) modes. BackwardCAR is advantageous for finding unsafe bugs,
while ForwardCAR is effective for proving safety [14}/15].
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As shown in Algorithm [I] CAR works by progressively widening the U sets
and narrowing the O sets. These sets are initialized at Line 2] with U set to the
state I and O set to =P. The algorithm maintains a stack of pairs (state, level),
where each state is associated with an index corresponding to an O frame. The
temporary frame Oy, ), initialized to —I at Line@ is updated during the process
to represent the next frame to be created.

In each iteration, CAR picks a state from the U-sequence, by default from
the beginning to the end, as shown in Line 5} and pushes it to the stack. Then,
for the state s at the top of the stack, CAR first checks if it is already blocked at
this frame(Line . If so, CAR backtracks this state to a higher level(Line ,
skipping over frames that already block this state. Otherwise, CAR goes on to
check if it can reach the O; frame by checking whether s AT A O; (Line is
satisfiable. If yes, a new state ¢t € Oy is extracted from the model and added to
the U-sequence, thereby widening it(Lines . Otherwise, the algorithm uses
the unsatisfiable core (denoted as UC) to constrain the O frame for the next
level, narrowing it (Lines , and pushes s back onto the stack. Afterward,
CAR backtracks this state at Line

Finally, CAR terminates the checking procedure with either ‘Safe’ or ‘Unsafe’.
The unsafe check attempts to find a path from I to =P while the working level [
is less than 0(Line[10]) and provides a counterexample. The safe check propagates
clauses from O; to O; 41, checking for a fixpoint. If reached, the algorithm returns
‘Safe’ based on the check in line

3 DMotivating Examples

Before delving into the examples, let us briefly review how CAR operates. The
CAR algorithm relies on SAT queries as its core mechanism to advance its search
process (see Line [14| of Algorithm . The SAT query checks whether a state s
from the U-sequence can transition to a particular O-frame O;. If the query
is successful (lines [I5H17), a new reachable state is identified, and CAR uses
this state to expand the U-sequence. Conversely, if the query fails, CAR refines
the O-sequence by incorporating the negation of the identified UC. The search
process of CAR is illustrated in Figure

CAR enhances search efficiency by retaining the reachable states in the U
sequence for future reuse, distinguishing it from the PDR algorithm. However,
an overabundance of remembered states could occasionally pose challenges. In
practice, we have observed that the CAR algorithm can sometimes be stuck
during the search process in certain situations, causing timeouts. Specifically,
the search process can get stuck within a subspace, consuming a significant
amount of time during a single iteration. This prompted us to investigate these
occurrences further, where we identified two recurring patterns that frequently
contribute to inefficient search progress.

Redundant States During the execution of the CAR algorithm, we ob-
served that when multiple states in the U-sequence attempt to reach a specific
O-frame, the UC generated by one state often blocks the others. For instance,
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Fig. 1. The CAR algorithm searches for reachable states by leveraging SAT queries.
When a state s in the U-sequence can transition to an O-frame O;, it expands the
U-sequence. Otherwise, it refines the O-sequence.

Fig. 2. Redundant states in the same subspace could generate identical UCs when
attempting to reach O;_1. Only one state (e.g., s1) needs to be explored, while others
(e.g., s2, s3) are redundant.

as depicted in Figure[2] state so has four successor states in O;. The shaded area
indicates that s1, ss, and s3 are within the same state space. When these states
attempt to transition to a specific O-frame O;_1, the UC generated by one of
them (e.g., s1) blocks the others (e.g., so and s3). This means that searching for
so and s3 is redundant because their outcomes are already determined by s;.
The root cause of this redundancy lies in the nature of SAT queries and the
behavior of SAT solvers. When a SAT query is satisfiable, there may be multiple
distinct assignments that satisfy the query. However, the SAT solver only returns
one of these assignments. Often, some variables in the query are free, meaning
their values do not affect the satisfiability of the query. Different assignments
of these free variables can lead to multiple distinct states being generated. For
example, if the SAT solver returns a state s; with a specific assignment of free
variables, other states sy and s3 that differ only in the assignments of these free
variables will also be generated. When these states later attempt to transition to
O;_1, they are all blocked by the same UC generated for s;, making their search
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redundant. Although CAR has a pre-check(Line [11] of Alg. [1)), the overhead is
not negligible, especially when with a large amount of accumulated UCs.

Fig. 3. Misleading states(e.g. s1, s2,s3) cannot transition to lower frames, leading to
the inefficient search.

Misleading States. We also observed an inefficiency in the search process
when a state attempts to transition multiple steps. Some states returned by
the SAT solver are not part of the actual transition trail and are added to the
U-sequence after being accessed once. These states may repeatedly fail when
revisited in the future. As shown in Figure [3] s¢ in O; can transition to O;_3 in
3 steps. During the search process, sg first reaches s; but fails to progress further
and backtracks to s;.;. Subsequently, sg reaches so and ss, each of which also
fails to go further. After multiple SAT queries, s¢ finally reaches s4, and through
the trail sg — s4 — sg — S9, it reaches O;_3.

This pattern is caused by the nature of SAT solver encoding. The SAT solver
encodes single-step transition relations, so the states it returns for each step may
not be the intermediate states required for a multi-step transition. For example,
even though sy can reach sg in 3 steps; when we ask the SAT solver whether
so can reach O;_1, it returns SAT but provides a state (s;) that cannot reach
O;_2. Only after several rounds of queries is s4 found, allowing the transition
to proceed. This results in misleading states such as s; — s3 and s5 — sy in
the figure, which are products of the SAT solver’s single-step encoding and the
different possible assignments to the constraints. Moreover, the presence of the
backtracking mechanism in the CAR algorithm exacerbates the issue, as s; can
introduce even more spurious states through backtracking, such as s;.1 — s1.2.

4 Implementing Dynamic Traversal in CAR

Motivated by the observations in Section [3] we first introduce heuristic methods
to optimize the traversal order of the U-sequence in CAR. These methods aim to
address the inefficient search patterns in the original algorithm. Then, we propose
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the algorithm of CAR-DT (CAR with the dynamic traversal optimization), which
can be regarded as a more flexible variant of CAR. Finally, we explore dynamic
traversal approaches based on CAR to further enhance the efficiency.

4.1 Heuristic Methods for Optimizing U-Sequence Traversal

By recognizing the patterns observed in the CAR algorithm, we propose strate-
gies to prioritize states more intelligently. Given that CAR is highly performance-
sensitive, it is crucial to identify these patterns using methods that do not intro-
duce additional computational costs. Fortunately, feasible approaches exist for
both patterns. We introduce two heuristic methods, PickUC and PickChil-
dren, corresponding to Redundant States and Misleading States, respectively.
Additionally, we propose a combined scoring mechanism to dynamically priori-
tize states based on their potential to advance the search process.

PickUC: Distinct States First. For Redundant States, the number of UCs
generated by a state can serve as an indicator. In the CAR algorithm, if a state
is blocked by existing UCs, it will not generate a new UC despite consuming
some checking time (the ‘isBlockedAt’ check, which can be generally understood
as a subsumption test). Consequently, states that are ‘always blocked by UCs
generated by other states’ will have a low number of generated UCs. This char-
acteristic can be leveraged to efficiently identify Redundant States.

To address this, PickUC prioritizes states that generate more UCs in the

previous round, as they are more likely to contribute to refining the O-sequence.
Conversely, states blocked by existing UCs — therefore generating no new UCs —
are deprioritized, reducing redundant computations.
PickChildren: Branching States First. For Misleading States, the number
of children states can be used as a criterion. Misleading states, which repeatedly
fail to transition further, tend to have a small number of children states (often
zero). In contrast, correct states that can continue the transition process have
more children (at least one). This difference in the number of children states can
be used to distinguish between misleading and correct states.

To mitigate this issue, PickChildren prioritizes states with more successors

(i.e., higher branching factors). These branching states are more likely to lead to
productive transitions and help advance the search. By focusing on such states,
the algorithm reduces time spent on unproductive leaf nodes.
Scoring mechanism: Combination of Both Criterions. The generation of
UCs relies on the SAT solver returning ‘UNSAT’, while the generation of succes-
sors depends on ‘SAT’ queries. Although these processes may initially seem con-
tradictory, they are actually complementary. Specifically, the same (state, level)
pair(see Line [9] of Alg[l]) could be queried multiple times, yielding one or more
SAT results, but ultimately resulting in a single UNSAT result (since the up-
dated UCs prevent further successors from being found). For a specific state,
the number of UCs reflects its ability to refine the O-sequence by eliminating re-
dundant paths, while the number of successors indicates its potential to explore
diverse transitions.
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Algorithm 2: The CAR algorithm with Dynamic Traversal

Input: A transition system Sys = (V,I,T) and a safety property P
Output: ‘Safe’ or (‘Unsafe’ + a counterexample)

1 if SAT (I A—=P) then return Unsafe

2 Up ::I, Oo = =P

3 while True do

4 Otmp =]
5 while state := pickStateDynamically (U) is successful do
6 stack := ()
7 stack.push (state, |O] — 1)
8 while stack.size # 0 do
9 (s,l) == stack.top() // Assume s € U;
10 L
11
12 if 3i > 1 s.t. (Up<;<; Os) 2 Oi41 then return Safe
13 Add a new state-set to O and initialize it to O¢mp

Building on these insights, we introduce a scoring mechanism that ranks
states within the U-sequence. By balancing the factors, we can prioritizes states
that efficiently prune the search space and explore deeper levels.

Specifically, each state is assigned a score based on a weighted sum of its UC
count and number of successors:

score = w - num(UCs) 4 (1 — w) - num(successors) (1)

where w is a tunable weight balancing the contributions of these two factors.
States are sorted in descending order of their scores in each iteration, with the
initial state always preserved to ensure correctness. This mechanism directs the
traversal toward states that either block redundant explorations through UCs or
offer diverse transitions through high branching factors, thereby enhancing the
efficiency of the CAR algorithm.

4.2 CAR with Partial Traversal

Prioritized traversal reduces the priority of low-value states, yet these states
can still be visited. To avoid unnecessary exploration of less promising states,
we propose the Partial Traversal strategy to enhance dynamic traversal. This
strategy explores only a selected portion of the U-sequence to improve efficiency.
Alg. 2] shows the implementation of the updated CAR-DT. The only difference
between CAR-DT and the original CAR, algorithm lies in the state selection pro-
cess(see Line. Specifically, CAR-DT only visits a subset of U-sequence. We then
prove that as long as the initial state is not excluded by the partial traversal,
the completeness of CAR-DT is maintained, as stated in the following theorem:
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Theorem 1 (Completeness). Given a Boolean transition system Sys and a
safety property P, CAR-DT terminates with UNSAFE if Sys & P and terminates
with SAFE if Sys = P.

Before proving the theorem, we first prove two lemmas separately. E|

Lemma 1 (Completeness-UNSAFE). Given a Boolean transition system
Sys and a safety property P, CAR-DT terminates with UNSAFE if Sys = P.

Proof. If the given problem is UNSAFE, there exists a finite path p from I to
—P. Let the length of p be n + 1, and label the states on the path as p[j] for
0 < j < n, where p[n] = I and p[0] € =P.

Assume the O-sequence has grown to size n+ 1E|7 i.e., we have Og, O1,...,0,.
Since p is a valid path, for each j from 0 to n—1, p[j + 1] AT A O} is SAT, where
Oj is the predicate for the next frame.

In CAR-DT, when the initial state I is selected (guaranteed not to be missed
by pickStateDynamically), the algorithm checks if I AT A O/, is SAT. Since
I can reach p[n — 1] in one step, this query will be SAT. And with finite stepsﬂ
p[n — 1] will be found and added to the working stack.

By induction, assume that p[k] has been found and pushed to the working
stack for some k < n. When p[k] is selected, the algorithm checks if p[k] AT AOj,_,
is SAT. Similarly, this query will be SAT, and p[k— 1] will be pushed to the stack.

Finally, p[0] € =P will be found, and the algorithm will terminate with
UNSAFE, returning the counterexample p. (]

Lemma 2 (Completeness-SAFE). Given a Boolean transition system Sys
and a safety property P, CAR-DT terminates with SAFFE if Sys = P.

Proof. By the design of CAR-DT, the O-sequence is monotonically increasing,
i.e., once the negation of a UC is added to an O-frame, it will never be removed.
With this continuous refinement, the O-sequence becomes increasingly precise,
and will eventually converge to the real reachable set R.

Since the system is SAFE, there exists no path from I to =P. As a result,
the O-sequence will eventually reach a fixpoint where no further states can be
added to the over-approximation. Formally, there exists a minimal &k such that:

(Uogjgk Oj) D Og41 This implies that the O-sequence has stabilized and no

new states can be reached beyond this point.
In CAR-DT, once the O-sequence reaches this fixpoint, the algorithm checks

whether the condition 3¢ > 1 such that (U0§j§i0j> D Ojy1 holds. If this

condition is satisfied, the algorithm terminates and returns ‘Safe’.
Since the O-sequence is guaranteed to converge to the true reachable set R,
the algorithm will eventually detect this fixpoint and correctly terminate with
‘Safe’. O
3 Due to space constraints, we only demonstrate the correctness of backward-CAR,
which involves a forward search. Forward-CAR can be proved similarly.

4 This is guaranteed to happen within finite time. The proof is the same as the original
CAR algorithm.

® This is guaranteed by the termination of the original CAR. algorithm.
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|n|t|a| states H‘ ’% high-score states eliminated states —>|

Score
.................. 0

retalned subset

Fig. 4. Reordered U-sequence after scoring and truncation.

And finally, we prove Theorem

Proof. An input problem could either be SAFE or UNSAFE. With the proved
lemmas Lemma |l| and Lemma [2| the completeness of CAR-DT is proved. |

Building on the insight that full traversal of the U-sequence is not necessary
for correctness, we now present the details of the CAR-DT implementation. The
partial traversal focuses on the initial state and the most promising states in the
U-sequence, identified by their scores from Equation [I] Figure [] illustrates the
reordered U-sequence when applying partial traversal in CAR-DT. The traversal
begins with the initial state, followed by states sorted according to their scores.
States beyond the retained subset are excluded from further traversal. This
approach reduces computational overhead by focusing on high-potential states
while ensuring algorithm correctness by always preserving the initial states.

A special case of the partial traversal strategy retains only the initial state
in the U-sequence. This is motivated by the fact that initial states typically
exhibit high scores due to their lack of blocking constraints and high branching
potential. By focusing exclusively on the initial states, this variant prevents
the accumulation of redundant or misleading states and eliminates the need to
manage a large U-sequence, resulting in U = {I}.

5 Evaluation

We implemented the proposed method on the state-of-the-art CAR-based single-
core model checker SlmpleCARﬁ [17], which incorporates the latest optimization
of the CAR algomthmm

5.1 Evaluation Setup

We conducted the experiments on a cluster, consisting of 240 nodes with 6720
processor cores altogether (14 processor cores per node) and running at 2.6GHz
with 96GB of RAM per node. The operating system is RedHat 4.8.5-16.

51t is a core component of the SuperCAR model checker |16], which received the
bronze award in recent HWMCC competition [10].
T All the artifacts are available at [1].
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Table 3. Comparison of solved cases with different picking strategies. ‘Basic’ refers to
the default traversal setting of the CAR algorithm. ‘Par-2 Score’ refers to the calcula-
tion of the average time consumption across all cases, where the run time of timed-out
cases is counted as double.‘VirtualBest’ refers to taking the best result of each checker.

Safe Unsafe
Method Gain|Loss|Solved |Gain|Loss|Solved Total Par-2 Score
Basic - - 106 - - 26 132 4299.81
PickUC 7 1 112 0 0 26 138 4204.39
PickChildren| 6 1 111 1 2 25 136 4249.70
VirtualBest - - 115 - - 27 142 -

Table 4. Performance of CAR with the scoring mechanism. VBS refers to Virtual
Best.

. PickChildren Scoring with different w PickUC
Strategies (w=0) [w=03[w=05lw=07]w=09 (w=1)| D>
Cases Solved 136 131 136 139 134 138 146
Safe Solved 111 107 111 112 109 112 118
Unsafe Solved 25 24 25 27 25 26 28
Par-2 Score 4249.70 4326.27|4247.25|4184.82|4266.53| 4204.39 | -

We evaluated our method using all 318 AIGER-format benchmarks from the
HWMCC 2024 competition, including both safe and unsafe cases, to show the
effectiveness of CAR-DT in proving safety and finding counterexamples. For each
running instance, the memory was limited to 8 GB; if not otherwise specified,
the time was limited to 1 hour.

5.2 Evaluation results

RQ1: How effective is the prioritized traversal strategy? To compare
the effectiveness of different picking methods on the CAR algorithm, we first
evaluated the performance of SimpleCAR under different state prioritizations,
the corresponding results are shown in Table.

The data reveals that both the PickUC and PickChildren strategies outper-
form the Basic traversal method. Specifically, PickUC gains 7 additional cases
compared to Basic, despite incurring 1 loss. PickChildren gains 7 cases, which
also contributes to the virtual best. Interestingly, virtual best solves 142 cases,
with an increase of 10 cases, which is equivalent to the combined improvements
of PickUC (6 cases) and PickChildren(4 cases) over Basic. This suggests that the
strategies are complementary, indicating that integrating them into the scoring
mechanism could further enhance the results.

To further explore the effects of combining the two picking strategies, we
conducted experiments using various values of w, which represents the weight
that balances the preference for avoiding either Redundant States or Misleading
States. When w = 1, the method defaults to PickUC, while w = 0 corresponds



14 Y. Dong, Y. Chen, J. Li and G. Pu

-
Y
=)

138 141

Solved Benchmarks
e e
s o © © N &
s & 8 8 & &

N
5]
[
@
o
@

100% 0% 30% 50% 70% 90%
(full traversal)

Fig. 5. The impact of different portion settings on the performance of the CAR-DT

algorithm. The X-axis represents the portion setting. All variants are with the best
Scoring strategy where w = 0.7.

Table 5. Par2-Score of CAR-DT with different configurations.

. . CAR-DT (z)
Strategies |Scoring method T =0 2=03l2 =05l 2=0712=009
Par2-Score 4184.82 4190.66|4179.08{4201.00/4074.68|4212.43

to PickChildren. The experimental results, shown in Table [4] indicate that the
optimal performance occurred when w = 0.7, which solved 112 safe cases and 27
unsafe cases. The virtual best of these scoring strategies reaches a total of 146
solved cases, showing that balancing the two patterns during the search process
uncovers additional potential for solving even more cases.

Thus, the superior performance compared to the Basic method highlights the
potential of prioritized traversal for advancing the verification process.

RQ2: Can CAR with Partial Traversal achieve better performance?
To evaluate whether searching on a subset of the U-sequence can further enhance
performance, we conducted experiments based on partial traversal. Specifically,
in each iteration, we eliminated a certain proportion of states from the end of
the ordered U-sequence, which corresponded to the least promising states. We
denote this approach as CAR-DT (x), where only the top x states are retained.
For example, CAR-DT (0%) reduces to the case where only the initial state is pre-
served, while CAR-DT (100%) retains all states, equivalent to the scoring method.

Building upon the optimal scoring strategy identified in RQ1, we conducted
experiments with several portion settings. The corresponding results are pre-
sented in Figure [5] CAR-DT outperforms the optimal scoring method when the
portion is set to 30% and 70%, whereas for other values, CAR-DT remains compa-
rable to the scoring method. CAR-DT (70%) achieves a peak value of 145, yielding
an improvement of 10% compared to the unoptimized Basic traversal strategy
of CAR, representing a significant enhancement.

Table [5] compares the Par-2 score of CAR-DT across different portion settings.
The results show that some variants achieves lower Par-2 scores compared to
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Table 6. The number of instances solved with a 1-hour timeout by different model
checkers. ‘Gain’ and ‘Loss’ refers to the comparison with CAR-DT. ‘VBS’ means the
virtual best.

Safe Unsafe
Gain|Loss|Solved|Gain|Loss|Solved
CAR-DT - - 117 - - 28 145
ABC-PDR 15 3 129 0 11 17 146
IIMC-PDR| 8 24 101 22 123
IC3-REF 2 12 107 11 12 27 134

Total

[\]
oo

AVY 11 13 115 12 6 34 149
VBS - - 137 - - 47 184
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Fig. 6. Comparison of run-time performance among different model checkers.

the scoring strategy. This indicates that dynamically discarding an appropriate
proportion of states from the U-sequence can significantly reduce the computa-
tional overhead and improve the overall efficiency of the CAR algorithm. For
instance, CAR-DT (70%) achieved a Par-2 score of 4074.68, which is much lower
than the score of 4184.82 obtained by the optimal weight of the scoring method,
demonstrating a notable improvement in verification efficiency.

RQ3: How does CAR-DT perform when compared to the state-of-the-
art model checking algorithms? To evaluate the performance of CAR-DT
against state-of-the-art model checking algorithms, we conducted a comprehen-
sive comparison with several leading tools, including ABC-PDR [5|, IIMC-PDR [12],
IC3-REF [11] and AVY [13].

As shown in Table [f] CAR-DT outperforms IC3-REF and IIMC-PDR, solving
more instances within the given time limit. When compared to ABC-PDR and AVY,
CAR-DT exhibits competitive performance, with a slight difference in the number
of solved instances. It should also be noted that CAR-DT can solve more safe cases
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(117) than AVY (115). This indicates that our approach is particularly effective
in proving safety properties, which is a crucial aspect of model checking.

Moreover, CAR-DT demonstrates notable complementarity with other algo-
rithms. For example, it can solve 14 instances that ABC-PDR cannot, while ABC-PDR
can solve 15 instances that CAR-DT cannot. Similarly, CAR-DT has a gain of 32
instances over IIMC-PDR and a gain of 24 instances over IC3-REF. These results
highlight the unique strengths of CAR-DT in certain types of verification tasks.
The virtual best solver of all these tools can resolve a total of 184 cases, which
underscores the potential for further improvement through the combination of
different algorithms. The high complementarity among these tools suggests that
integrating CAR-DT with other state-of-the-art model checkers could lead to a
more comprehensive and efficient verification framework. For instance, combin-
ing CAR-DT and AVY could leverage the strengths of both tools to solve a broader
range of benchmarks more effectively.

Figure [6] provides a more detailed comparison of the run-time performance
of these model checkers. It shows that CAR-DT consistently solves a significant
number of benchmarks faster than IC3-REF and IIMC-PDR. The performance
gap between CAR-DT and ABC-PDR is relatively small, indicating that both tools
are effective for a wide range of verification tasks. AVY, while having the highest
overall performance, does not exhibit a clear dominance over our approach in
terms of run-time efficiency for individual benchmarksﬁ

In conclusion, CAR-DT demonstrates strong performance compared to state-
of-the-art model checking algorithms. It outperforms some leading tools and
shows competitive performance with others, while also exhibiting notable com-
plementarity. These results highlight the effectiveness of our proposed dynamic
traversal approach in enhancing the efficiency and scalability of CAR-based
model checking.

6 Conclusion

In this paper, we proposed a dynamic traversal strategy for optimizing CAR-
based model checking. By implementing prioritized traversal on a subset of U-
sequence, we introduced an efficient approach that reduces redundant compu-
tations and improves scalability. The experimental results show that the ap-
plication of our method, CAR-DT, significantly outperforms the original CAR
algorithm and achieves competitive performance compared to state-of-the-art
model checkers.

This work enhances CAR’s practical applicability, offering a more efficient
solution for large-scale verification tasks. In future work, we will focus on devel-
oping more intelligent methods to dynamically adjust the balance between these
components.

8 Notably, with only 3 cores (CAR-DT, AVY and IC3-REF), the combined performance
already surpasses that of many candidates with 16 cores in HWMCC 2024.
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