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Abstract. In this paper, we consider the Minimal Unsatisfiable Core
(MUC) problem for Linear Temporal Logic over finite traces (LTLf ),
which nowadays is a popular formal-specification language for AI-related
systems. Efficient algorithms to compute such MUCs can help locate
the inconsistency rapidly in the written LTLf specification and are very
useful for the system designers to amend the flawed requirement. As
far as we know, there are no available tools off-the-shelf so far that
provide MUC computation for LTLf . We present here two generic ap-
proaches NaiveMUC and BinaryMUC to compute an MUC for LTLf .
Moreover, we introduce heuristics that are based on the Boolean Un-
satisfiable Core (UC) technique to accelerate the two approaches, which
are named NaiveMUC+UC and BinaryMUC+UC, respectively. In par-
ticular, for global LTLf formulas, we show that the MUC computation
can be reduced to the pure Boolean MUC computation, which therefore
conducts the GlobalMUC approach. Our experiments show that Glob-
alMUC performs the best to compute an MUC for global formulas, and
BinaryMUC+UC is the best for an arbitrary unsatisfiable formula.

Keywords: Minimal Unsatisfiable Core · Linear Temporal Logic over
finite traces · Boolean Unsatisfiable Core.

1 Introduction

Linear Temporal Logic over finite traces, or LTLf , is a formal specification lan-
guage that describes system behaviors in a mathematical/logical way. Basically,
LTLf is a variant of Linear Temporal Logic (LTL), which was introduced into
computer science in 1977 [29] and is interpreted over infinite traces. Compared
to that, LTLf is interpreted over finite traces, which is more suitable to capture
the scenarios in AI, e.g. planning [1, 10, 5, 28, 6]. Because of the wide spectrum
of applications in the AI community [8], fundamental techniques for LTLf rea-
soning, e.g., satisfiability checking [24, 23], the translation to automata [40, 33,
11] and synthesis [39, 2, 34, 38, 18] have been investigated in depth.
⋆ Yanhong Huang is the corresponding author.



2 T. Niu et al.

In this paper, we focus on another fundamental problem of LTLf , i.e., the
computation of minimal unsatisfiable core (MUC) for an unsatisfiable formula. In
scenarios where specifications are written in some temporal logic, the satisfiability-
checking process is normally provided as soon as the specification is ready. If the
checking result turns out to be unsatisfiable, the specification is meaningless
and has to be amended. Such procedure is called specification debugging and has
been widely used in relevant domains [27, 12, 13, 37]. Meanwhile, specification
debugging is also useful for the AI community, considering that more and more
applications are formally specified by LTLf . An MUC of an unsatisfiable formula
(specification) represents a minimal part of the formula that causes unsatisfia-
bility. Computing the MUCs can help locate the conflict in the specification
efficiently and reduce the cost of specification debugging.

Inconsistency diagnosis (or finding minimal unsatisfiable cores) has been
studied in AI scenarios like declarative process [35, 14], user preference [22] and
configuration [16], to name a few, where the specifications (or constraints) are
not described as LTLf formulas but as regular expressions or predicates. Com-
pared to that, this paper presents dedicated approaches to compute MUC of
LTLf formulas for further diagnosis.

There are several works on extracting the (Minimal) Unsatisfiable Cores
(UCs) for LTL formulas [7, 31, 32, 20]. Hantry et al. studied the complexity of
computing MUCs for LTL formulas in theory but did not give a practical imple-
mentation [20]. Cimatti et al. presented two kinds of UC-extraction methods for
LTL by exploiting BDD [4] and SAT [15] techniques respectively [7], which how-
ever, both need to reduce LTL satisfiability to model checking and were shown
not efficient in previous works [25, 26]. Schuppan presented a resolution-based
approach to extract the UC (Unsatisfiable Core) of an unsatisfiable LTL formula
[31, 32] and integrated it into the LTL satisfiability checker TRP++ [21]. The
main challenge to applying such a methodology for specification debugging may
be a heavy translation from the input formula to its Separated Normal Form
(SNF) [17] has to be involved4. Based on the resolution method to compute UCs
for LTL formulas, Goré et al. present further to compute the MUC by exploiting
a single BDD computation [19].

Towards LTLf UC (or MUC) computation, it cannot be reduced to LTL UC
(or MUC) compuation directly, even though they have the same syntax. For
example, □◦a requires that at every timestamp a has to be true in the next
timestamp. Such a formula is unsatisfiable in LTLf since the last position of
an arbitrary model does not have a next position, while it is satisfiable in LTL
for that LTL is interpreted over infinite models. As a result, more efforts need
to pay to compute LTLf UCs or MUCs. Recently, four different approaches to
compute the unsatisfiable core of LTLf formulas are investigated in [30], three
of which are extended from those for LTL UC-extraction proposed in [7, 31] and
the other is based on our previous work on LTLf satisfiability checking [23]. Yet
the UCs computed by these approaches are not necessarily minimal. The main

4 From the literature [17], the size of generated SNF can be 10X larger than the
original formula.
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goal of this paper is to conduct an efficient MUC solver for unsatisfiable LTLf
formulas. We also show later that computing MUCs by using the approaches of
this paper can be advantageous to computing UCs by the algorithms proposed
in [30].

Given an unsatisfiable LTLf formula φ with the conjunctive form
∧
φi, let

Sφ be the set of conjuncts of φ. We formally define one MUC muc of φ is a
subset of Sφ such that (1)

∧
φi is unsatisfiable for φi ∈ muc and (2)

∧
φj is

satisfiable for each φj ∈ S where S ⊊ muc. An intuitive solution is to delete
elements in Sφ one by one and check whether the deleted element has to be in
the MUC. Also, to improve performance, one may adopt the dichotomy strategy
to delete elements in a more aggressive way. These two trivial approaches are
named NaiveMUC and BinaryMUC, respectively.

However, the above two approaches are generic and do not utilize the in-
herent features of LTLf for MUC computation. In this paper, we leverage two
important observations from [24] and thus present the corresponding heuristics
dedicated to LTLf . We first utilize the concept of obligation formula for an LTLf
formula, which essentially is a Boolean formula indicating the satisfiability of the
corresponding LTLf formula. When the obligation formula is unsatisfiable, an
SAT solver [15] can return a UC that relates to a subset of the original LTLf
formula. If such LTLf part is still unsatisfiable, the MUC can be computed
only based on this part of the formula. Therefore, the elements that need to be
considered in the original formula set can be potentially reduced. We apply it
to both NaiveMUC and BinaryMUC and therefore present the NaiveMUC+UC
and BinaryMUC+UC approaches. Secondly, for global LTLf formulas with the
form of □ψ (□ is the global operator introduced below), we show that the MUC
computation can be reduced to the Boolean MUC computation, enabling us to
leverage the state-of-the-art MUC solver for Boolean formulas [3] to efficiently
compute the MUC for unsatisfiable global LTLf formulas. Such an approach is
named GlobalMUC.

We conduct an extensive experimental evaluation on the five different ap-
proaches to MUC computation for LTLf . We benchmarked the tools with unsat-
isfiable formulas from the widely-used patterns in relevant domains [23, 27]. The
results show that GlobalMUC performs best on computing MUCs for unsatisfi-
able global formulas. In fact, it can achieve a 300X speedup than the second-best
approach BinaryMUC+UC. For general instances, BinaryMUC+UC performs
the best, followed by BinaryMUC, NaiveMUC+UC, and NaiveMUC in order.
In particular, BinaryMUC+UC is able to gain more than 10% performance im-
provement than the second-best one BinaryMUC.

In summary, the main contribution of this paper is to present different ap-
proaches for computing LTLf MUCs and investigate the best solutions through
a comprehensive evaluation. Also, we release the first available LTLfMUC solver
for the community at https://github.com/nuutong/aaltaf-muc.git.

The rest of this paper is organized as follows. Section 2 introduces prelimi-
naries, Section 3 presents both the theoretic foundations and implementations
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of the five different approaches to compute LTLf MUCs, Section 4 presents the
experimental results, and finally, Section 5 concludes the paper.

2 Preliminaries

Linear Temporal Logic over finite traces, or LTLf [9], extends propositional logic
with finite-horizon temporal connectives. In particular, LTLf can be considered
as a variant of Linear Temporal Logic (LTL) [29]. Differently from LTL, which
is interpreted over infinite traces, LTLf is interpreted over finite traces. Given a
set of atomic propositions P, the syntax of LTLf is identical to LTL, and defined
as:

φ ::= tt | p | ¬φ | φ ∧ φ | ◦φ | φU φ

where tt represents the true formula, p ∈ P is an atomic proposition, ¬ is the
negation, ∧ is the and, ◦ is the strong Next and U is the Until operator. We
also have the corresponding dual operators (in semantics, see below) ff (false)
for tt , ∨ (or) for ∧, • (weak Next) for ◦ and R (Release) for U . Moreover, we
use the notation □φ (Global) and ♢φ (Future) to represent ff Rφ and tt U φ,
respectively. Notably, ◦ is the standard Next operator, while • is weak Next ; ◦
requires the existence of a successor state, while • does not. Thus •φ is always
true in the last state of a finite trace since no successor exists there.

A finite trace ρ = ρ[0], ρ[1], . . . , ρ[n] is a sequence of propositional interpre-
tations (sets), in which ρ[m] ∈ 2P (0 ≤ m < |ρ|) is the m-th interpretation of
ρ, and |ρ| = n + 1 represents the length of ρ. Intuitively, ρ[m] is interpreted as
the set of propositions that are true at instant m. We denote ρi to represent
ρ[i], ρ[i+ 1], . . . , ρ[n], which is the suffix of ρ from position i.

LTLf formulas are interpreted over finite traces. For a finite trace ρ and an
LTLf formula φ, we define the satisfaction relation ρ |= φ (i.e., ρ is a model of
φ) as follows:

• ρ |= tt ;
• ρ |= p iff p ∈ ρ[0], where p is an atomic proposition;
• ρ |= ¬φ iff ρ ̸|= φ;
• ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
• ρ |= ◦φ iff |ρ| > 1 and ρ1 |= φ;
• ρ |= •φ iff |ρ| = 1 or ρ1 |= φ;
• ρ |= ♢φ iff ρi |= φ for some 0 ≤ i < |ρ|;
• ρ |= □φ iff ρi |= φ for every 0 ≤ i < |ρ|;
• ρ |= φ1 U φ2 iff there exists i with 0 ≤ i < |ρ| such that ρi |= φ2, and for

every j with 0 ≤ j < i it holds that ρj |= φ1.
• ρ |= φ1 Rφ2 iff for every 0 ≤ i < |ρ|, ρi |= φ2 does not hold implies that

there is 0 ≤ j < i such that ρj |= φ1.

Two LTLf formulas φ1 and φ2 are semantically equivalent, denoted as φ1 ≡
φ2, iff for every finite trace ρ, ρ |= φ1 iff ρ |= φ2. According to the semantics
of LTLf formulas, it is trivial to have that ff ≡ ¬tt , ◦φ ≡ ¬•¬φ, (φ1 U φ2) ≡
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¬(¬φ1 R¬φ2) and □φ ≡ ¬♢¬φ. A literal is an atomic proposition p ∈ P or
its negation (¬p). We say an LTLf formula is in Negation Normal Form (NNF)
if the negation operator appears only in front of an atomic proposition. Every
LTLf formula can be converted into its NNF in linear time. We assume that all
LTLf formulas are in NNF in this paper, to meet the constraint of [26] that
the SAT-based LTLf satisfiability checking algorithm requires the input formula
to be in NNF5. Given an LTLf formula φ and its set of atomic propositions
P, the notation 2P denotes all subsets of P. Each A ∈ 2P is considered as an
assignment of each atomic proposition, where a is assigned to be true if a ∈ A;
Otherwise a is false. Also, we use the notation (2P)+ to represent the set of all
non-empty finite traces whose each position consists of an assignment of 2P .

Definition 1 (LTLf Satisfiability). An LTLf formula φ is satisfiable iff there
exists a (non-empty) finite trace ρ ∈ (2P)+ such that ρ |= φ; otherwise, it is
unsatisfiable.

Theorem 1 ([9]). Checking the satisfiability of an LTLf formula is PSPACE-
complete.

In this paper, we focus on the LTLf formula with the form of
∧

1≤i≤n φi,
where φi is called the i-th clause. A clause is an LTLf formula whose root
operator is not ∧. So we can represent an LTLf formula φ by a set of clauses {φi |
1 ≤ i ≤ n}. In the rest of the paper, we mix-use an LTLf formula φ and
its corresponding clause set. That means, the formula φ can represent the
clause set {φi | φi is a clause of φ} and, a formula set {φi | φi is a clause of φ}
can also represent the formula

∧
φi. In particular, ∅ represents tt . Now we define

the minimal unsatisfiable core for an LTLf formula.

Definition 2 (Minimal Unsatisfiable Core). A minimal unsatisfiable core
(MUC) muc of a given LTLf formula φ, is a subset of φ such that
1. muc is unsatisfiable;
2. every proper subset of muc (i.e., ⊊ muc) is satisfiable.

By Definition 2, for a given LTLf formula, there may be more than one
subset that satisfies the above conditions, that is, one formula may have more
than one MUC.

Theorem 2. Computing an MUC for an unsatisfiable LTLf formula is PSPACE-
hard.

Proof. According to Definition 2, the MUC can be computed in the following
steps: (1) pick a clause φi ∈ φ which is never chosen; (2) update φ = φ \ {φi} if
φ \ {φi} is still unsatisfiable; Otherwise keep φi in φ; (3) repeat (1) until every
clause is selected. The final φ computed from the above procedure is an MUC.
Assume the number of clauses of φ is n, then this construction at most invokes n-
times the checking of LTLf satisfiability. Recall that checking LTLf satisfiability
is PSPACE-complete (Theorem 1). Therefore, the MUC computation for the
unsatisfiable LTLf formula is PSPACE-hard.
5 The translation to the input of an SAT solver requires the input LTLf formula to

be in NNF, more details please refer to the literature [26].
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3 Computing LTLf Minimal Unsatisfiable Core

In this section, we first present two general algorithms NaiveMUC and Binary-
MUC to construct an MUC for an arbitrary unsatisfiable LTLf formula. Then
we introduce heuristics based on the Boolean UC technique and integrated it
into the above two general approaches to conduct NaiveMUC+UC and Bina-
ryMUC+UC, respectively. Finally, we propose the dedicated MUC algorithm
GlobalMUC for the global unsatisfiable formulas.

3.1 NaiveMUC and BinaryMUC: MUC Computation in General

Algorithm 1: NaiveMUC (without the part in the dashed box) and
NaiveMUC+UC (with the part in the dashed box). The function im-
plementation of getUcFrom is shown in Algorithm 3 with the proper
explanation in Section 3.2.

Input: An unsatisfiable LTLf formula φ
Output: An MUC for φ

1 S := clauses(φ)
2 muc := ∅
3 while S ̸= ∅ do
4 pop ψ out of S
5 if S ∧muc is satisfiable then
6 muc := muc ∪ {ψ}

7

else
S′ := getUcFrom(S,muc)
if S′ ∧ muc is unsatisfiable
then

S := S′

8 return muc

As mentioned in the proof of Theorem 2, a trivial way to construct an MUC is
to delete one clause of the input unsatisfiable formula φ at a time and then check
whether the remaining part is still unsatisfiable. If the result is unsatisfiable,
the chosen clause is not in the final MUC and can be removed from the original
formula. Repeating the above process for every clause in the original formula and
the remaining clauses in the final formula is an MUC. This algorithm is named
NaiveMUC and shown in Algorithm 1 (without the part inside the dashed box).
The correctness of this trivial approach can be guaranteed by Theorem 3 below.

Taking the unsatisfiable LTLf formula φ = □♢a∧a∧□♢¬a∧b as an example,
NaiveMUC first removes the first clause from the formula to obtain the remaining
formula φ1 = a ∧ □♢¬a ∧ b, which is satisfiable. Therefore, the clause □♢a
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belongs to an MUC, and it is added to the muc set. Next, the second clause of
φ is removed to obtain the remaining formula φ2 = □♢a ∧ □♢¬a ∧ b. Since φ2

is unsatisfiable, the second clause a does not belong to an MUC, so it can be
removed from the original formula. The simplified formula φ = □♢a∧□♢¬a∧ b
is obtained. This process continues by removing the third clause and performing
satisfiability checking, until all clauses have been attempted to be removed once,
resulting in an MUC of {□♢a,□♢¬a}.

Lemma 1. For two LTLf formulas φ1 and φ2 such that φ1 ⊆ φ2, φ1 is unsat-
isfiable implies that φ2 is unsatisfiable.

Proof. We perform the proof by contradiction. We assume that φ2 is satisfiable
when φ1 is unsatisfiable. Then there exists a finite trace ρ such that ρ |= φ2. By
φ2 = φ1 ∧ (φ2 \ φ1), we have ρ |= φ1, which contradicts that φ1 is unsatisfiable.
So the hypothesis does not hold, i.e., φ2 is unsatisfiable if φ1 is unsatisfiable.
The proof is done.

Theorem 3. For two LTLf formulas φ1 and φ2 such that φ1 ⊆ φ2, φm is an
MUC for φ1 implies that φm is an MUC for φ2.

Proof. Since φm is an MUC for φ1, φ1 is unsatisfiable (otherwise φ1 does not
have an MUC). Also because φ1 ⊆ φ2 is true, so φ2 is unsatisfiable according
to Lemma 1. Based on Definition 2, φm ⊆ φ1 is true, so φm ⊆ φ2 is also true.
Moreover, because φm is an MUC for φ1, from Definition 2, φm satisfies (1) φm
is unsatisfiable, and (2) every proper subset of φm is satisfiable. Therefore, φm
is an MUC for φ2. The proof is done.

Obviously, the NaiveMUC approach above requires calling the LTLf sat-
isfiability solver for each clause in the original formula. It can be improved by
introducing the dichotomy strategy to reduce the invoke frequencies of the LTLf -
satisfiability-checking procedure that is time-consuming. The main algorithm
BinaryMUC is shown in Algorithm 2 (without the parts inside the dashed box).

In Algorithm 2, we obtain the MUC from an LTLf formula based on the
dichotomy strategy. We initialize the set S by the input formula φ (Line 1). In
the while loop (Line 3-16), we process one element ψ of S in each round. Note
that we pop ψ out of S and ψ is no longer in S (Line 4). If ψ contains only one
clause (i.e., |ψ| = 1), this clause has to be included in muc (Line 5-7). Otherwise,
we divide ψ into the binary partition ⟨ψ1, ψ2⟩. If ψ1∧S∧muc is unsatisfiable, ψ2

is discarded and ψ1 is pushed back into S (Line 9-11). Similarly, if ψ2 ∧S ∧muc
is unsatisfiable, ψ1 is discarded and ψ2 is pushed back into S (Line 12-14). If
neither of the above is unsatisfiable, then both of them contain clauses in muc.
So we put ψ1 and ψ2 both back into S and divided them into two parts instead
of as a whole (Line 16).

Consider the formula φ = □♢a∧ a∧□♢¬a∧ b, and BinaryMUC first divides
the formula φ into the sub-formulas φ1 = □♢a ∧ a and φ2 = □♢¬a ∧ b. Then,
their satisfiability is checked, and since both φ1 and φ2 are satisfiable, we know
that they both contain part of the clauses in the MUC. Therefore, they are
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both added to stack S for further processing. We then take out φ1 from S and
divide it into the sub-formulas φ11 = □♢a and φ12 = a. At this point, S only
contains φ2 and muc is empty, so φ11 ∧ S ∧muc is equivalent to φ11 ∧ φ2 (i.e.,
□♢a ∧ □♢¬a ∧ b). φ11 ∧ S ∧muc is unsatisfiable, so φ11 contains some clauses
from the MUC, and since φ11 only contains one clause, □♢a belongs to the
MUC and is added to the muc set. Since φ1 = φ11 ∧ φ12 is satisfiable and we
already know that φ11 contains some clauses from the MUC, φ12 does not need
to be checked and can be removed. We then take out φ2 from S and repeat the
process. If we rearrange the clauses in φ to obtain φ′ = □♢a∧□♢¬a∧a∧b, then
after the first binary division, we can directly reduce the length of the formula
by half (because φ′

1 = □♢a ∧ □♢¬a is unsatisfiable and we can simply remove
the second half of the formula, a ∧ b).

The Partition(ψ) function at Line 8 divides the formula ψ into two subfor-
mulas with an equal number of clauses. And it requires ψ to contain more than
two clauses. Formally, for ψ = {ψ1, · · · , ψn} with n ≥ 2, we have Partition(ψ) =
⟨{ψ1, · · · , ψ⌊n/2⌋}, {ψ⌊n/2⌋+1, · · · , ψn}⟩. Now we prove the correctness of the al-
gorithm.

Lemma 2. Let ψ =
∧
ψi and θk =

∧
k ̸=i ψi where 1 ≤ i, k ≤ |S ∪ muc| and

ψi ∈ S ∪muc, then we have the following properties always true in Algorithm 2:

1. ψ ⊆ φ is true and ψ is unsatisfiable;
2. θk is satisfiable for every 1 ≤ k ≤ |S ∪muc|.

Proof. 1. Initially, ψ = φ is true and ψ is unsatisfiable. In the while loop, only
ψ2 ⊆ clauses(φ) (Line 10-11) or ψ1 ⊆ clauses(φ) (Line 12-13) is removed
from S ∪muc. Therefore, ψ only consists of elements from clauses(φ), and
ψ ⊆ φ is true. Moreover, Line 10-11 and Line 12-13 also guarantees ψ is still
unsatisfiable after removing ψ2 and ψ1, respectively.

2. Initially, |S| = 1 and deleting one element makes S empty. In this case,
θk = true and it is satisfiable. Inductively, assume θk is satisfiable for each
k at the beginning of the while loop. After one round of the loop, there is
φi ∈ S such that only a half of clauses(φi) will be kept in S (Line 10-13),
or φi will be partitioned into two equal parts and kept in S (Line 15).
In the former case, deleting ψ1 or ψ2 at Line 10-13 makes ψ satisfiable,
because according to the hypothesis S\{φi} is satisfiable before the loop
starts, and here S\{φi} before the loop starts equals S\{ψ1} at Line 10-11
or S\{ψ2} at Line 12-13. Moreover, let φj ̸= φi be an element in S\{ψ1}
at Line 10-11. Then θj is satisfiable because S\{ψ1, φj} at Line 10-11 is a
subset of S\{φj} before the loop starts. According to the hypothesis, θj is
satisfiable before the loops start, and therefore θk is also satisfiable at Line
10-11. The case is similar at Line 12-13.
In the latter case at Line 15, the formula corresponding to S does not change,
since φi = ψ1 ∪ψ2 is true at Line 15. So even though φi is popped out from
S at Line 4, S becomes the same after Line 15. It implies that |S ∪ muc|
does not change as well. According to the hypothesis, each θk is satisfiable
before the loop, so it is still satisfiable after Line 15. The proof is done.
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Algorithm 2: BinaryMUC (without the part in the dashed box) and
BinaryMUC+UC (with the part in the dashed box). The details of func-
tion getUcFrom are also referred to Algorithm 3 and Section 3.2.

Input: An unsatisfiable LTLf formula φ
Output: An MUC for φ

1 S := {φ}
2 muc := ∅
3 while S ̸= ∅ do
4 pop ψ out of S
5 if ψ contains only one clause then
6 muc := muc ∪ ψ
7 continue

8 ⟨ψ1, ψ2⟩ := Partition(ψ)
9 if ψ1 ∧ S ∧muc is unsatisfiable then

10

let ψ′
1 := getUcFrom(ψ1, S ∧muc)

if ψ′
1 ∧ S ∧ muc is unsatisfiable

then
S := S ∪ {ψ′

1}

11 else
12 S := S ∪ {ψ1}

13 else if ψ2 ∧ S ∧muc is unsatisfiable then

14

let ψ′
2 := getUcFrom(ψ2, S ∧muc)

if ψ′
2 ∧ S ∧ muc is unsatisfiable

then
S := S ∪ {ψ′

2}

15 else
16 S := S ∪ {ψ2}

17 else
18 S := S ∪ {ψ1, ψ2}

19 return muc

Theorem 4. The output of BinaryMUC in Algorithm 2 is an MUC of the input
unsatisfiable formula φ.

Proof. First Algorithm 2 can always terminate, because after every loop the size
of S is reduced and it will be eventually empty. When the algorithm terminates,
S is empty. From Lemma 2, the set muc satisfies (1) muc ⊆ φ and muc is unsat-
isfiable, and (2) deleting every element from muc, i.e., θk will become satisfiable.
Also in Line 5-6 of Algorithm 2, it guarantees every element of muc is a clause.
Therefore, muc is exactly an MUC of φ based on Definition 2.
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3.2 NaiveMUC+UC and BinaryMUC+UC: MUC Computation
using Boolean Unsatisfiable Core

The NaiveMUC and BinaryMUC approaches are logic-free to compute MUCs.
For example, the algorithms can also be used to compute an MUC for an un-
satisfiable Boolean formula. However, these two approaches do not utilize the
inherent features dedicated to LTLf , e.g., those shown in [24]. In this section,
we revisit such features in LTLf and present the corresponding MUC algorithms
that can leverage those heuristics.

Definition 3 (Obligation Formulas [24]). Given an LTLf formula φ, we
inductively define three kinds of obligation formulas: general obligation formula,
global obligation formula and release obligation formula, denoted as off(φ), ofg(φ)
and ofr(φ) respectively. (We use ofx as a generic reference to off, ofg and ofr.)

• ofx(φ) = φ if φ is tt , ff or a literal;
• ofx(φ) = ofx(φ1) ∧ ofx(φ2) if φ = φ1 ∧ φ2;
• ofx(φ) = ofx(φ1) ∨ ofx(φ2) if φ = φ1 ∨ φ2;
• off(φ) = off(φ1), ofg(φ) = ff and ofr(φ) = ff if φ = ◦φ1;
• off(φ) = off(φ1), ofg(φ) = tt and ofr(φ) = ff if φ = •φ1;
• ofx(φ) = ofx(φ2) if φ = φ1 U φ2;
• off(φ) = ofr(φ2), ofr(φ) = ofr(φ2) and ofg(φ) = ofg(φ2) if φ = φ1 Rφ2.

Take the third item as an example, ofx(φ) = ofx(φ1) ∧ ofx(φ2) represents
actually off(φ) = off(φ1) ∧ off(φ2), ofr(φ) = ofr(φ1) ∧ ofr(φ2) and ofg(φ) =
ofg(φ1) ∧ ofg(φ2). In the definition, ofr(φ) is introduced to define off(φ) when
the formula is a Release one. Here we list a few examples to help understand the
computation process. Consider the LTLf formula φ = aR(•b), we have off(φ) =
ofr(•b) = ff and ofg(φ) = ofg(•b) = tt . For LTLf formula ψ = a ∧ (cU(◦b)),
we have ofr(ψ) = ofr(a) ∧ ofr(cU(◦b)) = a ∧ ofr(◦b) = a ∧ ff .

The following lemma shows how off() can help determine the satisfaction of
LTLf formulas.

Lemma 3 ([24]). For an LTLf formula φ, off(φ) is satisfiable implies φ is
satisfiable.

It should be noted that the other direction of Lemma 3 is not necessarily true.
Consider the formula φ = ♢a ∧ ♢¬a as an example, where off(φ) = off(♢a) ∧
off(♢¬a) = a ∧ ¬a = ff is unsatisfiable. Conversely, the formula φ is satisfiable.
The theorem below is a direct result of Lemma 3.

Theorem 5. For an LTLf formula φ, φ is unsatisfiable implies off(φ) is unsat-
isfiable.

Motivated from Theorem 5, heuristics that are based on Boolean Unsatisfi-
able Core (UC) technique can be proposed to accelerate the MUC computation
for unsatisfiable LTLf formulas. From the theorem we know that φ is unsatis-
fiable implies off(φ) is also unsatisfiable. Therefore, we can utilize the modern
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SAT solvers, such as Minisat [15], to construct a UC from off(φ), which corre-
sponds to a subset φ′ of φ. If φ′ is still unsatisfiable, then we can compute the
MUC from φ′ instead of φ, which can potentially speed up the performance.

The UC-based heuristics can be integrated into both NaiveMUC and Binary-
MUC, which are shown in Algorithm 1 and 2, respectively. In the algorithms, the
getUcFrom procedure implements the UC-based heuristics. Given ψ1 ∧ψ2 being
unsatisfiable, getUcFrom(ψ1, ψ2) returns a subset ψ′

1 of ψ1 such that ψ′
1 ∧ ψ2 is

still unsatisfiable.
Assuming φ1 = □♢a∧b and φ2 = □♢¬a, after executing getUcFrom (φ1,φ2),

the formula is first converted to the off() form, off(φ1) = off(□♢a)∧off(b) = a∧b
and off(φ2) = ¬a, and then sent to the Boolean satisfiability solver. The resulting
uc is {a}, corresponding to the clause □♢a in φ1. This method can be used to
quickly reduce the length of the formula φ1 when solving for an MUC.

To achieve this functionality, one can utilize the assumption-based SAT
solver, e.g., Minisat [15], to encode ψ1 as the set of assumptions and ψ2 to
the set of clauses. The UC ψ′

1 from the SAT solver is ensured to be the subset
of ψ1.

Algorithm 3: getUcFrom: Implementation of the UC extractions for
LTLf formulas

Input: Two LTLf formulas φ1 = {φ11, φ12, . . . , φ1m} and
φ2 = {φ21, φ22, . . . , φ1n} such that φ1 ∧ φ2 is unsatisfiable.

Output: An LTLf formula φ′
1 such that φ′

1 ⊆ φ1 and φ′
1 ∧ φ2 is unsatisfiable.

1 C :=
∧

1≤i≤m TCNF(off(φ1i)) ∧
∧

1≤j≤n TCNF(off(φ2j))

2 Let poff(ψ) be the Boolean variable corresponding to off(ψ) in TCNF(off(ψ))
3 C := C ∧

∧
1≤j≤n poff(φ2j)

4 Assumption :=
∧

1≤i≤m poff(φ1i)

5 assert BooleanSAT (Assumption,C) = unsat
6 Get uc ⊆ Assumption from the SAT solver
7 return φ′

1 = {ψ | poff(ψ) ∈ uc}

The implementation of getUcFrom is shown in Algorithm 3. Given the two
input LTLf formulas φ1 and φ2, one can prepare the input for the SAT solver as
follows. We first compute the off formula for each element in φ1 and φ2, based
on which the Conjunctive Normal Form (CNF) via Tseitin transformation [36]
is computed in the TCNF function. Generally speaking, for an arbitrary Boolean
formula ψ in NNF, the Tseitin transformation computes the corresponding CNF
TCNF(ψ) in the linear cost such that ψ is satisfiable iff pψ ∧TCNF(ψ) is satisfiable
where pψ is the Boolean variable corresponding to ψ. For details, TCNF is achieved
inductively as follows:

1. TCNF(p) = p and TCNF(¬p) = ¬p;
2. TCNF(ψ1 ∧ ψ2)

= (pψ1∧ψ2
↔ pψ1

∧ pψ2
) ∧ TCNF(ψ1) ∧ TCNF(ψ2)
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= (pψ1∧ψ2
∨¬pψ1

∨¬pψ2
)∧ (¬pψ1∧ψ2

∨ pψ1
)∧ (¬pψ1∧ψ2

∨ pψ1
)∧ TCNF(ψ1)∧

TCNF(ψ2);
3. TCNF(ψ1 ∨ ψ2)

= (pψ1∨ψ2
↔ pψ1

∨ pψ2
) ∧ TCNF(ψ1) ∧ TCNF(ψ2)

= (¬pψ1∨ψ2
∨ pψ1

∨ pψ2
) ∧ (pψ1∨ψ2

∨ ¬pψ1
) ∧ (pψ1∨ψ2

∨ ¬pψ1
) ∧ TCNF(ψ1) ∧

TCNF(ψ2).

As a result, the input to the SAT solver has the form of
∧

1≤i≤m pφ1i
∧∧

1≤j≤n pφ2j
∧
∧

1≤i≤m TCNF(φ1i)∧
∧

1≤j≤n TCNF(φ2j ). For assumption-based SAT
solvers like Minisat, they allow separating the input into two parts: the assump-
tions (which are essentially unit clauses) and non-assumptions (which are regular
clauses). Moreover, if the input is unsatisfiable, the solvers can return a subset
of assumptions that represent the unsatisfiable core (UC). Here, we can make∧

1≤i≤m pφ1i
to the assumptions (Line 5 of Algorithm 3) and the left are non-

assumptions (Line 4 of Algorithm 3). After the SAT call (Line 6), the UC uc can
be returned from the SAT solver and thus obtain the parts φ′

1 from the original
input LTLf formula φ1 (Line 8).

The following theorem guarantees the correctness of the new algorithms in-
tegrated with the UC-based heuristics.

Theorem 6. The outputs of NaiveMUC+UC and BinaryMUC+UC are both
the MUC of the input formula.

Proof. Compared NaiveMUC+UC to NaiveMUC in Algorithm 1, the only differ-
ence is the content in the dashed block. In this block, S′ is computed by an SAT
solver, which guarantees S′ ⊆ S holds. Moreover, S can be updated to S′ only if
S′ ∧muc is unsatisfiable. According to Theorem 3, the MUC from S′ is also the
MUC of S. The proof to the correctness of BinaryMUC+UC is analogous.

3.3 GlobalMUC: Reducing global LTLf MUC to Boolean MUC

We say an LTLf formula φ is a global formula if it is in the form of φ =
∧
φi =∧

□ψi. In this section, we show that the MUC computation for an unsatisfiable
global formula can be reduced to the MUC computation for an unsatisfiable
Boolean formula, which is the ofg() formula in Definition 3.

Lemma 4 ([24]). For a global LTLf formula φ =
∧
□ψi, we have that φ is

satisfiable iff ofg(φ) is satisfiable.

Based on Lemma 4, the following main theorem to guarantee the correctness
of GlobalMUC is straightforward.

Theorem 7. Given an unsatisfiable global LTLf formula φ = {φ1, · · · , φn} and
its obligation formula ofg(φ) = {ofg(φ1), · · · , ofg(φn)}, {φm1

, · · · , φmk
} is an

MUC for φ iff {ofg(φm1
), · · · , ofg(φmk

)} is an MUC for ofg(φ), where 1 ≤ mi ≤
n for 1 ≤ i ≤ k.
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Proof. Let S1 be the set {φm1
, · · · , φmk

} and S2 be {ofg(φm1
), · · · , ofg(φmk

)}.
It is true that S2 = ofg(S1). Also let S′

1 be a proper subset of S1 and S′
2 be the

corresponding subset of S2 such that S′
2 = ofg(S′

1). According to Definition 2,
S2 is an MUC for ofg(φ) iff (1) S2 is unsatisfiable, and (2) every proper subset
S′
2 of S2 is satisfiable. From Lemma 4, S1 is unsatisfiable iff S2 is unsatisfiable.

Also, every proper subset S′
1 of S1 is satisfiable iff every proper subset S′

2 of S2

is satisfiable, based on Lemma 4. So S1 is an MUC for φ iff S2 is an MUC for
ofg(φ).

Theorem 7 guarantees that, to compute an MUC for φ =
∧
□ψi, we can

first compute the MUC for ofg(φ) by leveraging the state-of-the-art Boolean
MUC solvers, such as MUser2 [3]. Notably, the preparation of the input to MUC
solvers is analogous to that of the input to SAT solvers, so details are omitted
here. After that, we can locate the subset φ′ of φ which corresponds to the
Boolean MUC based on Theorem 7. It should be highlighted that there is only
one Boolean MUC call necessary to compute an MUC for an unsatisfiable global
LTLf formula. Therefore, this dedicated algorithm can be much faster than the
general ones presented in previous sections.

4 Experimental Evaluation

4.1 Experimental Set-up

Table 1: Average solution time (millisecond) on unsatisfiable formulas

Formula type Number of
formulas NaiveMUC NaiveMUC

+UC BinaryMUC BinaryMUC
+UC

/acacia/demo-v3 11 174 1 10 0
/alaska/lift 131 85307 56885 16025 13303
/anzu/amba 20 244519 238289 1284 1197
/anzu/genbuf 20 241733 232900 12563 16948
/forobots 38 20 1 11 0
/rozier/counter 76 78974 20109 407 239
/schuppan/O1formula 27 64117 13 47 15
/schuppan/O2formula 27 90820 97775 92757 96070
/schuppan/phltl 49 311726 4213 16297 6236
/trp/N12x 419 48168 48160 47976 47977
/trp/N5x 250 73 88 23 21
/unsat 224 1 4 1 4
Total 1292 1165632 698438 187401 182010

Tools. We implemented the five approaches in the tool aaltaf-muc, using aaltaf
[23] as the LTLf satisfiability checker. For the GlobalMUC approach, we use
MUser2 [3] as the Boolean MUC solver. Also, to ensure the correctness of the
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implementation, we integrated the functionality to check whether the outputs
of the five approaches are really an MUC of the input formula, which is enabled
by the “-c” flag in aaltaf-muc. The principle behind is as follows: (1) first check
whether the output formula set is still unsatisfiable, and (2) delete each element
of the formula set to check whether the left part is satisfiable. The output is an
MUC iff it can pass both two checks above. The whole tool is implemented in
C++ and can be run on a Linux system with GCC version greater than 4.7.0.

Because of the correlation between the MUC and UC, we consider the UC
computation approaches proposed in [30]. In the literature, four different ap-
proaches were presented to compute the Unsatisfiable Core (UC) for LTLf .
Among them, three were motivated by computing LTL UCs introduced in [7,
31] and the other was by our previous work on LTLf satisfiability checking [23].
Notably, both the results from [30] and our preliminary experiments show that
the UC computation approach based on our previous work, which is named
AALTAF-UC here, computes UCs faster than the other three in most of the
tested cases. In about half of the tested cases, AALTAF-UC returns the smallest
UCs as well. Therefore, we only involve the comparison to AALTAF-UC in this
paper.
Benchmarks. Since MUC can be computed only for unsatisfiable formulas, we
select the unsatisfiable formulas from the widely-used LTLf benchmarks in [23].
Also, due to the fact that LTL and LTLf formulas have the same syntax and an
LTL formula φ being unsatisfiable implies the LTLf formula φ is unsatisfiable
as well [23], we select the LTL benchmarks for debugging from [27, 12]. In these
benchmarks, general formulas have the form

∧
i φi, and global formulas have

the form □(
∧
i φi). In total, there are 1292 unsatisfiable LTLf formulas and 665

global ones. The different types of benchmarks are shown in the first column of
Table 1.
Platform. We ran the experiments on a RedHat 6.0 cluster with 2304 processor
cores in 192 nodes (12 processor cores per node), running at 2.83 GHz with 48GB
of RAM per node. Each tool was executed on a dedicated node with a timeout
of five minutes, measuring execution time with the time command. The timeout
instances will get a 300-second runtime as a penalty6. Excluding timeouts, all
outputs from the five approaches pass the MUC check (using the “-c” flag in
aaltaf-muc) successfully.

4.2 Comparison among different MUC-computation approaches

Figure 1 shows that BinaryMUC has a significant performance improvement
when compared with NaiveMUC. The time unit in the figure is mill-seconds and
the same applies to others. Within the 5-minute timeout, the BinaryMUC can
solve 80 more formulas than NaiveMUC. The average solution time of Binary-
MUC is roughly 20 seconds, which is two times as fast as NaiveMUC. The reason

6 In the scatter plots (Fig. 1-4 and Fig. 9(a)), timeout instances are plotted on the
axis boundaries.
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Fig. 1: Comparison between Naive-
MUC and BinaryMUC on general
formulas.

Fig. 2: Comparison between Naive-
MUC and NaiveMUC+UC on gen-
eral formulas.

Fig. 3: Comparison between Bina-
ryMUC and BinaryMUC+UC on
general formulas.

Fig. 4: Comparison between Naive-
MUC+UC and BinaryMUC on
general formulas.

why BinaryMUC performs well is that the dichotomy strategy can quickly re-
duce the length of the formula. In the best case, the length of the formula can
be reduced in half at one time, thereby increasing the speed of computation.

Figure 2 shows that NaiveMUC+UC performs better than NaiveMUC. Com-
pared to NaiveMUC, NaiveMUC+UC can solve 35 more formulas. Among all the
tested instances, the number of formulas that NaiveMUC+UC solves faster is
more than twice than that of NaiveMUC solves faster. In the cases when Naive-
MUC+UC performs better, the average speed is 27 seconds faster than that of
NaiveMUC. But when NaiveMUC performs better, the average speed is only 9
seconds faster than that of NaiveMUC+UC. The observation is that, when UC
is effective, the computation speed can be significantly improved. We further
analyze the reasons why using UC do not always perform better as follows. In
fact, computing UC needs additional time cost, and the worse case is computing
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UC can only waste time, e.g., the LTLf formulas corresponding to the UC are
satisfiable.

Figure 3 shows that BinaryMUC+UC performs better than BinaryMUC in
the overall performance. Explicitly, there are 227 formulas that can be solved
faster by using BinaryMUC+UC and 178 formulas can be solved faster by using
BinaryMUC. The reason why using UC does not speed up the computation for
certain instances, is the same as above.

Figure 4 shows the results between NaiveMUC+UC and BinaryMUC. It can
be seen that BinaryMUC has better performance. For details, BinaryMUC can
solve 45 more formulas than NaiveMUC+UC and has an average solution time
of about 20 seconds. Meanwhile, the average solution time of NaiveMUC+UC is
about 33 seconds, which is 13 seconds slower.

Figure 5 shows the cumulative solution time of the four algorithms on general
formulas. From the figure, we can see that the BinaryMUC algorithm achieves
a >50% speed-up over the NaiveMUC algorithm, while BinaryMUC+UC has
only a small advantage over BinaryMUC, which is consistent with the results
discussed earlier. Moreover, the virtual best results among different approaches
are plotted in the figure, and BinaryMUC+UC performs almost as well as the
virtual best one. Table 1 lists the average solution time of these four algorithms
on different types of general formulas. We can find that the solution speed of
the algorithm is related to the specific structure of the formula, but in general,
using UC makes the algorithm perform better.

According to the analysis of the above five figures, we conclude that for a gen-
eral LTLf formula, BinaryMUC+UC performs best, followed by BinaryMUC,
NaiveMUC+UC, and NaiveMUC in order. For the general approaches Naive-
MUC and BinaryMUC, better performance can be obtained after integrating
with the UC heuristic.

Figure 6 shows that GlobalMUC performs more than 300 times faster than
BinaryMUC+UC and BinaryMUC. The evaluations on NaiveMUC and Naive-
MUC+UC are not considered here as they are not competitive in previous exper-
iments. Even more, GlobalMUC performs the same as the virtual best one which
collects all the best results from different approaches. Based on Theorem 4, the
GlobalMUC approach only needs to call the MUser2 tool once after converting
the LTLf formula into its ofg() Boolean formula, which significantly improves
the performance. For global formulas, GlobalMUC has the best performance,
gaining a 300× speed-up when compared to the other two competitive solutions.

Figure 7 shows the comparison of the sizes of computed MUCs from the
four different approaches7. For nearly 98% of all the instances excluding those
timeout, every approach computes an MUC with a size smaller than 10. The
figure shows clearly that for a given instance, the sizes of MUCs computed by
different approaches do not vary significantly.

We also use the Jaccard index to measure the overlap of computed MUCs
among different approaches. Firstly, when comparing BinaryMUC with Binary-

7 Timeout instances are plotted on the bounds of the y-axis with the MUC size being
100.
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MUC+UC, the Jaccard index formula we use to measure the overlap is (|M1 ∩
M2|)/(|M1 ∪M2|), where M1,M2 are the MUCs computed by BinaryMUC and
BinaryMUC+UC respectively. The Jaccard index value for each instance is plot-
ted in Figure 8(a). It turns out that BinaryMUC and BinaryMUC+UC compute
the same MUCs (the Jaccard index is 1) on more than 90% of the instances (1219
out of 1291) solved by both approaches, and the same situation occurs with
NaiveMUC and NaiveMUC+UC. Introducing the UC heuristics seems mainly
to speed up the MUC computation. However, as shown in Figure 8(b), when
considering BinaryMUC+UC and NaiveMUC+UC, the ratio of the same out-
put MUCs reduced to 46% (589 out of 1291), which is reasonable, because they
use different strategies to enumerate elements of the original formula, thus con-
structing different MUCs. Finally, it is worth noting that, there are 44 (resp. 642)
out of 1291 instances for that BinaryMUC and BinaryMUC+UC (resp. Binary-
MUC+UC and NaiveMUC+UC) compute completely different MUCs without
any overlap (Jaccard index is 0).

(a) (b)

Fig. 8: Plots on the Jaccard index between BinaryMUC vs. BinaryMUC+UC
(left) and NaiveMUC+UC vs. BinaryMUC+UC (right).

In summary, we conclude from the experimental results that 1) BinaryMUC
is better than NaiveMUC; 2) Applying the UC-based heuristics to BinaryMUC
is able to improve the performance with an approximate 10% speed-up, and 3)
GlobalMUC is the best solution to compute MUCs for global LTLf formulas.

4.3 Comparison to UC-computation approaches in [30]

We compare the best MUC-computation approach, i.e., BinaryMUC+UC, to
the best UC-computation approach, i.e., AALTAF-UC. Firstly, we compare the
time cost of these two approaches for each instance, which is shown in Fig. 9(a).
In terms of time-consuming for each instance, AALTAF-UC can outperform
BinaryMUC+UC on 74% of the benchmarks, while BinaryMUC+UC is able
to outperform AALTAF-UC on 25% of the benchmarks. It is reasonable that
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Fig. 9: Comparison between AALTAF-UC and BinaryMUC+UC on general for-
mulas.

AALTAF-UC can be faster than BinaryMUC+UC because computing UCs is a
simpler task than computing MUCs. However, if we consider the accumulated
time that is shown in Fig. 9(b), the total time costs of BinaryMUC+UC and
AALTAF-UC are nearly the same. There are 81 (resp. 78) instances in total
for which AALTAF-UC (resp. BinaryMUC+UC) cannot compute the UC (resp.
MUC) (see those plots on the bound of axis in Fig. 9(a)). There are two more
timeout cases solved by AALTAF-UC than BinaryMUC+UC, thus yielding a
900-seconds more accumulated penalty time. Therefore, although AALTAF-UC
can outperform BinaryMUC+UC in more cases, the total accumulated times for
both approaches are similar.

Secondly, the results show that the sizes of computed MUCs are in general
smaller than those of computed UCs, see Fig. 10(a).8 It is obvious that for most
of the instances, the MUCs computed from our best approach BinaryMUC+UC
have smaller sizes than that of UCs computed by AALTAF-UC. However, other
approaches in [30] may produce smaller UCs than AALTAF-UC, and our results
are not sufficient to show the BinaryMUC+UC can have smaller MUC sizes
than any algorithm presented in the literature [30]. Please note that some of the
samples in the figure have relatively large MUC sizes, even exceeding 60. These
samples are from the schuppan/O2formula benchmark, and for these cases, the
UC-extraction algorithms cannot even return a result. Therefore, we show that
computing MUCs by BinaryMUC+UC does not cost significant overhead when
compared to the UC computation by AALTAF-UC. Also towards the overlap
comparison between BinaryMUC+UC and AALTAF-UC, the plots are shown
in Figure 10(b). AALTAF-UC and BinaryMUC+UC compute the same UCs on
729 out of 1291 instances (the ratio is 56%) and completely different UCs on 143
out of 1291 cases (the ratio is 11%) without any overlap. The results show that
about half of the UCs computed by AALTAF-UC are already minimal, which

8 Timeout instances are plotted on the bounds of the y-axis with an MUC (UC) size
equals to 100.
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is consistent with the observation from [30] (in these cases AALTAF-UC can
compute smaller sizes of UCs than other approaches). It is surprising to see that
computing UCs via the conflict sequence, which is presented in our previous
work [26], are MUCs. The reason will be explored in our future work.

(a) (b)

Fig. 10: (a) Comparison on the sizes of computed MUCs (UCs) between
AALTAF-UC and BinaryMUC+UC. (b) Plots on the Jaccard index of AALTAF-
UC vs. BinaryMUC+UC.

5 Concluding Remarks

In this paper, we focus on the MUC problem of unsatisfiable LTLf formulas
and present five different solutions, including two generic and three dedicated
ones for LTLf . We then fully explore the performance among these approaches
by an extensive experimental evaluation and show that the GlobalMUC is the
best approach to compute MUCs for global formulas, while BinaryMUC+UC is
the best option to compute MUCs for an arbitrary unsatisfiable LTLf formula.
We implement these approaches into our tool aaltaf-muc, and to the best of our
knowledge, aaltaf-muc is the only available solver that provides MUC computa-
tion for LTLf . We also compared to the latest work on LTLf UC computation,
and show that computing the MUC can still have significant advantages.

In the current stage, the satisfiability solver is used as a black box to com-
pute MUCs for unsatisfiable LTLf formulas, whose knowledge of unsatisfiability
is discarded. In the future, we consider extracting the UC directly from the sat-
isfiable solver to help accelerate the MUC computation. Also, LTLf has been
widely used in AI-related applications such as planning, and we will investi-
gate proper scenarios in the real world to apply our MUC computation methods
to accelerate the necessary inconsistency checking for specifications written in
LTLf .
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