A Journey from LTLf Satisfiability to Synthesis

Jianwen Li

jwli@sei.ecnu.edu.cn

East China Normal University, Shanghai, China March 28, 2023

Collaborated with Ofer Strichman and Moshe Vardi

Linear Temporal Logic

• First introduced to Computer Science by A. Pnueli in 1977

• Formal verification (over infinite traces: LTL)

• AI (over finite traces: LTLf) [IJCAI 13]

Linear Temporal Logic

Syntax for LTL and LTLf:

$$\varphi \coloneqq p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi \cup \varphi \mid \varphi R \varphi \mid G\varphi \mid F\varphi$$

- $\triangleright \neg (\varphi_1 U \varphi_2) \equiv \neg \varphi_1 R \neg \varphi_2$
- $ightharpoonup \neg (X\varphi) \equiv \neg N \neg \varphi$ (weak Next), for LTLf only
- \triangleright F $\varphi \equiv true U \varphi$
- $ightharpoonup G\varphi \equiv \text{false R } \varphi$

Linear Temporal Logic

Semantics for LTL (LTLf)

- Let δ be a trace with $|\delta| = n \ (n > 0)$
 - $\delta \models p \text{ if } p \in \delta[0]$
 - $\delta \vDash \neg \varphi \text{ if } \delta \not\vDash \varphi$
 - $\delta \vDash \varphi_1 \land \varphi_2$ if $\delta \vDash \varphi_1$ and $\delta \vDash \varphi_2$
 - $\delta \vDash X\varphi$ if n > 1 and $\delta_1 \not\vDash \varphi$
 - $\delta \vDash \varphi_1 \cup \varphi_2 \text{ if } \exists i \geq 0. \sigma_i \vDash \varphi_2 \text{ holds, and } \forall 0 \leq j < i. \sigma_j \vDash \varphi_1 \text{ holds.}$
- LTL semantics: $n = \infty$
- LTLf semantics: $n < \infty$

LTL vs. LTLf

• X true is always true in LTL, but not in LTLf

• $(a \land X \text{ true}) \not\equiv a \text{ in LTLf}$

• $\neg X\varphi \not\equiv X \neg \varphi \text{ in LTLf } (\neg X\varphi \equiv N \neg \varphi)$

• $GX\varphi$ is unsatisfiable in LTLf

LTLf Satisfiability

• Given an LTLf formula φ , is there a non-empty finite trace δ such that $\delta \vDash \varphi$?

- G a is satisfiable
- G X a is unsatisfiable
- GF a ∧ GF ¬a is unsatisfiable

LTLf Synthesis

• Given an LTLf formula φ with the $\langle \mathcal{X}, \mathcal{Y} \rangle$ variable partition, is there a winning strategy $f: (2^{\chi})^* \to 2^{Y}$ such that f will eventually produce a satisfiable trace of φ by interacting between the input (\mathcal{X}) and output (\mathcal{Y}) variables.

- We consider system-first synthesis
- G (a -> b) is realizable where $\mathcal{X}=\{a\}$ and $\mathcal{Y}=\{b\}$
- G (a \land b) is unrealizable where $\mathcal{X}=\{a\}$ and $\mathcal{Y}=\{b\}$

Satisfiability and Realizability (Synthesis)

• Both are fundamental problems for LTLf

- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice

• Question: Can we solve LTLf realizability via satisfiability?

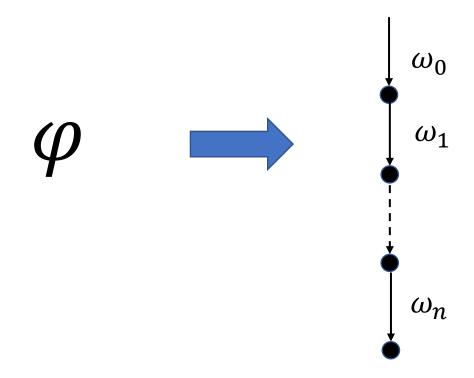
Satisfiability and Realizability (Synthesis)

• Both are fundamental problems for LTLf

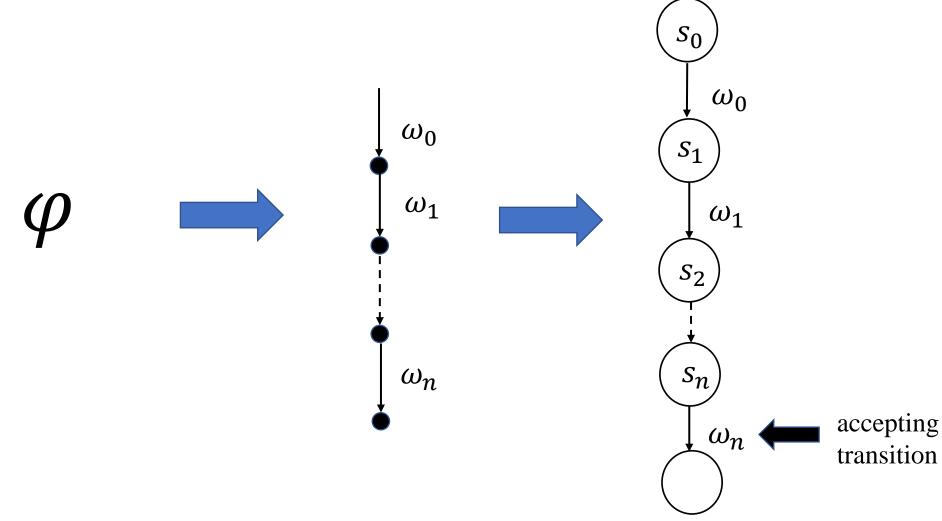
- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice
- Question: Can we solve LTLf realizability via satisfiability?

Syn-SAT: A high-level description of the algorithm

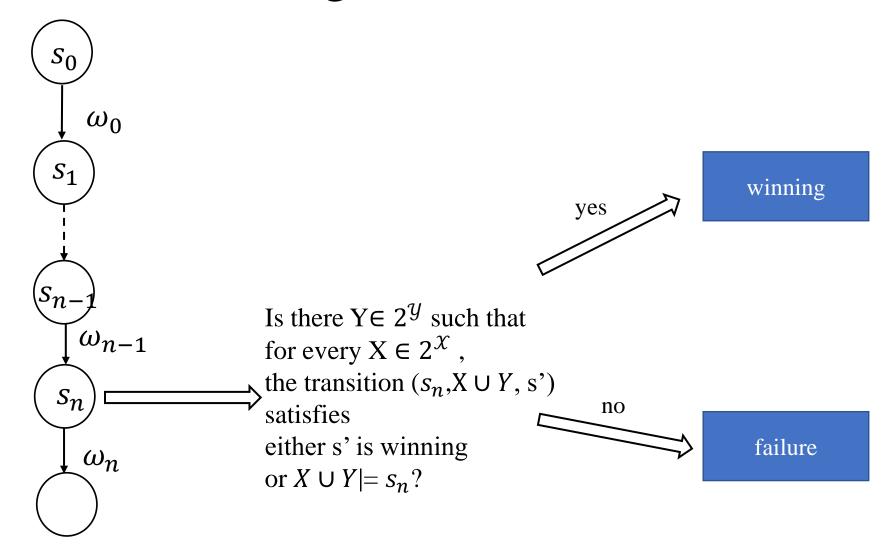
Step 1: Find a satisfiable trace



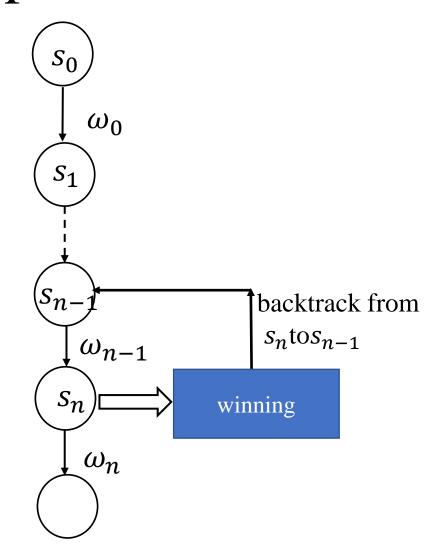
Step 2: Find a satisfiable run via progression

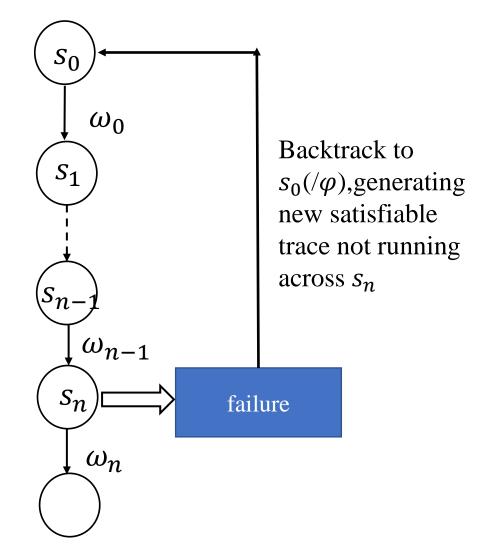


Step 3: check winning/failure states



Step 4: Backtrack





Step 5: Termination

• s_0 is winning => realizable

• s_0 cannot find a satisfiable trace => unrealizable

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

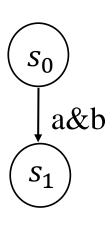
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



find a satisfiable trace and run.

• $\varphi = F a \& FG b \text{ and } \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

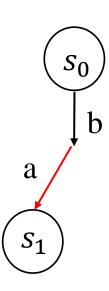
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



select b and check whether s_0 can be winning.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

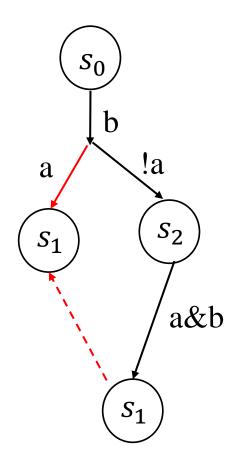
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_0 and fix b, find another satisfiable trace and run.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

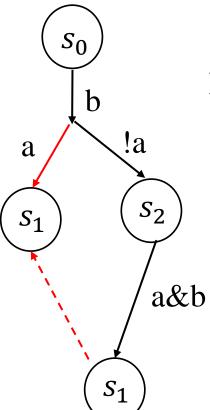
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



Recursively check whether s_2 is winning.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

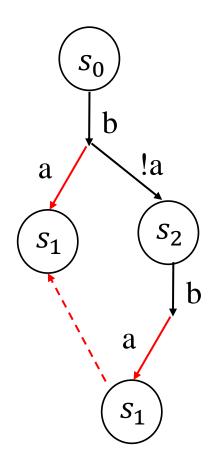
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_2 and fix b, find another satisfiable trace and run.

• $\varphi = F a \& FG b \text{ and } \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

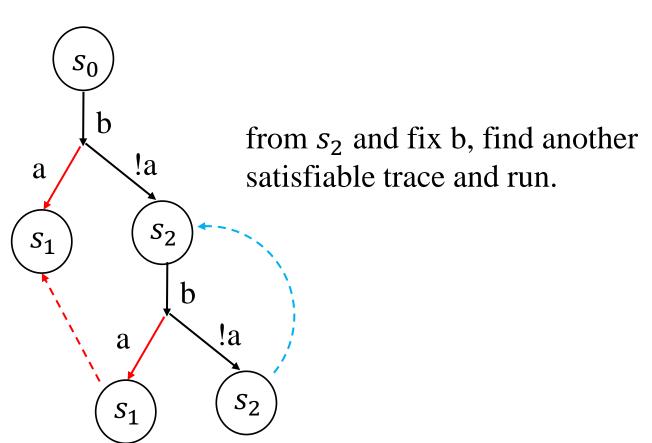
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



• $\varphi = F a \& FG b \text{ and } \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

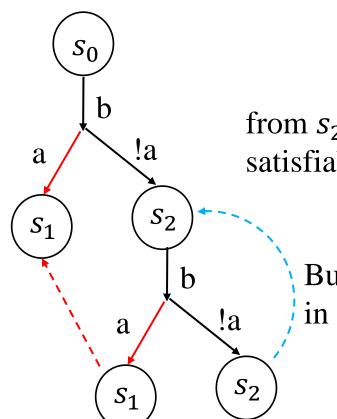
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_2 and fix b, find another satisfiable trace and run.

But the system cannot win in the loop $(s_2, b\&!a, s_2)$.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

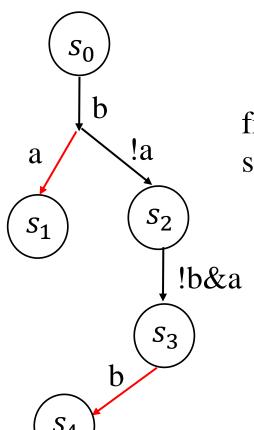
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_2 and block b, find another satisfiable trace and run.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

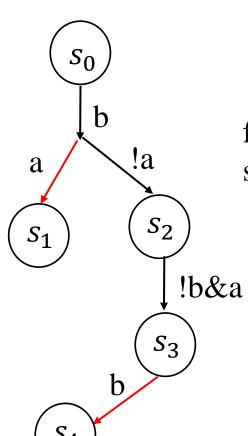
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_2 and block b, find another satisfiable trace and run.

 s_3 is winning, so backtrack to s_2 .

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

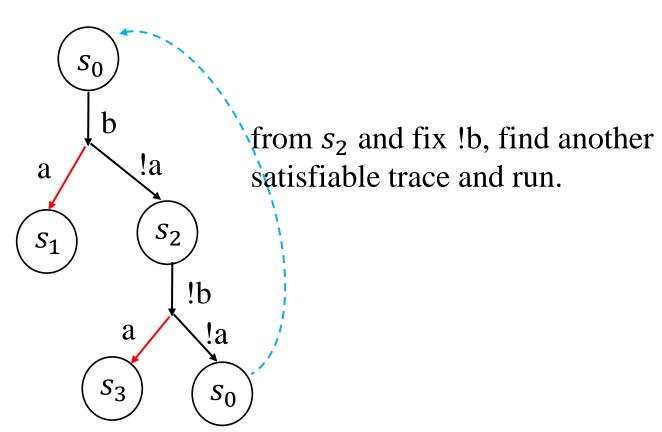
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



• $\varphi = F a \& FG b \text{ and } \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

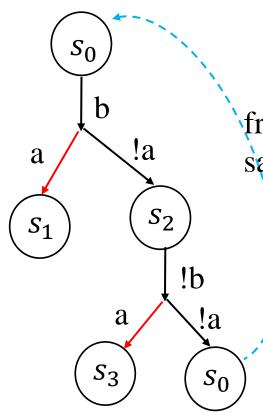
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



from s_2 and fix !b, find another satisfiable trace and run.

The system cannot win in the loop, so s_2 is failure.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$

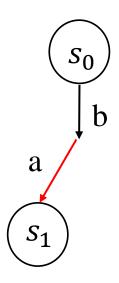
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

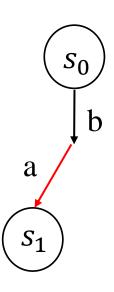
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b.

 s_0 is a failure state.

• $\varphi = F a \& FG b \text{ and } \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$

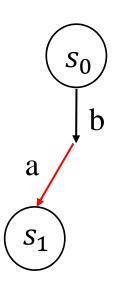
$$s_0 = \varphi$$

$$s_1$$
=G b | FG b

$$s_2$$
=Fa & (G b | FG b)

$$s_3 = FG b$$

$$s_4 = G b$$



From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b.

 s_0 is a failure state.

 φ is unrealizable!

Experimental Set-up

• SVS: implemented based on aaltaf [AAAI 2019]

• Cythia: the most recent LTLf synthesis tool [IJICAI 2022]

• OLFS: Our previous LTLf synthesis tool [AAAI 2021]

• Benchmarks: 1494 instances in total, including 40 Pattern instances, 54 Two-player-Games instances and 1400 Random instances

Results

Table 1: Summary of results: pairwise comparison

Comparing	Uniquely	Uniquely	Solved	Solved
	solved by SVS	solved by 'other'	faster by SVS	faster by 'other'
SVS/ OLFS	246	12	39	134
SVS/ Cynthia	136	32	65	219

Table 2: Summary of results

Tool	Realizable		Unrealizable	
	Solved	Uniquely solved	Solved	Uniquely solved
SVS	189	11	232	107
OLFS	89	1	98	3
Cynthia	189	9	128	15

Summary

• We present a new LTLf synthesis approach by using satisfiability checking

• The experimental results show the promise of the new approach

• In future, we will explore more effective heuristics to continually improve the overall performance

Q&A