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Abstract. SAT-based techniques comprise the state-of-the-art in functional veri-
fication of safety-critical hardware and software, including IC3/PDR-based model
checking and Bounded Model Checking (BMC). BMC is the incontrovertible
best method for unsafety checking, aka bug-finding. Complementary Approxi-
mate Reachability (CAR) and IC3/PDR complement BMC for bug-finding by
detecting different sets of bugs. To boost the efficiency of formal verification, we
introduce heuristics involving intersection and rotation of the assumption literals
used in the SAT encodings of these techniques. The heuristics generate smaller
unsat cores and diverse satisfying assignments that help in faster convergence of
these techniques, and have negligible runtime overhead. We detail these heuris-
tics, incorporate them in CAR, and perform an extensive experimental evaluation
of their performance, showing a 25% boost in bug-finding efficiency of CAR. We
contribute a detailed analysis of the effectiveness of these heuristics: their influ-
ence on SAT-based bug-finding enables detection of different bugs from BMC-
based checking. We find the new heuristics are applicable to IC3/PDR-based
algorithms as well, and contribute a modified clause generalization procedure.

1 Introduction

Model checking techniques are widely used in proving functional correctness and have
received unprecedented attention in the hardware and software design communities
[6,18,22]. Given a system model M , and a property P representing a requirement,
model checking proves whether or not P holds for M . A model checking algorithm ex-
haustively evaluates all possible behaviors (state-space exploration) of M , and returns
a counterexample as evidence if any behavior violates the requirement. The counterex-
ample gives the step-wise execution of the system that leads to property failure, i.e.,
a bug. Particularly, if P is a safety property, model checking reduces to reachability
analysis, and the counterexample is of finite length. Popular reachability analysis algo-
rithms include Bounded Model Checking (BMC) [9,8], Interpolation Model Checking
(IMC) [25], Property Directed Reachability (IC3/PDR) [12,16], and Complementary
Approximate Reachability (CAR). The common theme between these algorithms is
that they are all SAT-based. BMC outperforms IMC on checking unsafe instances, i.e.,
bug-finding, while IC3/PDR and CAR can solve instances that BMC cannot [23]. It has
been shown that better synergy between some of these algorithms and the SAT solver



improves performance [14]. The continuous rapid advancement of SAT techniques also
boosts the scalability of these algorithms.

Most SAT-based model checking algorithms use a CNF-based SAT solver as a
black-box. The queries are expressed in CNF and the satisfiability result: SAT assign-
ment, or unsat core, is used with or without modifications. Several solver management
strategies: restart, clean-up, and (de)allocation, impact performance. In an ideal sce-
nario, if the solver is aware of the verification problem then it may generate assign-
ments or cores that help state-space exploration converge faster. However, achieving
this is not trivial due to variability across different verification problems. There is a sig-
nificant need to “guide” SAT search for model checking without modifying SAT solver
internals, e.g. generating favorable unsat cores. This requires careful consideration of
solver internals, and should have negligible overhead.

Complementary Approximate Reachability (CAR) [24,23] is a SAT-based model
checking framework for reachability analysis. It can run in both forward and backward
reachability modes; we focus on Backward-CAR as per previous work [23]. Contrary
to reachability analysis via IC3/PDR, Backward-CAR maintains two sequences of
over- and under- approximate reachable state-sets. The over-approximate sequence is
used for safety checking, and the under-approximate for unsafety checking. We present
clever and efficient heuristics to improve the performance of Backward-CAR on un-
safety checking. The heuristics are inspired by assumption handling in modern CNF-
based SAT solvers: assumptions literals are stored in a vector. The SAT solver prop-
agates each assumption one-by-one, and therefore, the unsat core (UC) or satisfiable
assignment can vary depending on the order in which literals are stored in the vector.
Our heuristics, intersection and rotation aim to generate smaller UC and diverse states
during search, respectively. In addition to the heuristics, we explore the effect of differ-
ent state enumeration strategies in the under-approximate sequence of Backward-CAR.
We argue that our heuristics are widely applicable and may improve the performance of
other SAT-based model checking algorithms, like IC3/PDR. A thorough experimental
evaluation on 748 single safety property benchmarks from HWMCC 2015 [2] and 2017
[3] reveals a 25% boost in the number of benchmarks that can be solved by Backward-
CAR (155) compared to an earlier version in [23] (124). We also compare six imple-
mentations of Backward-CAR with varying heuristic combinations against reachabil-
ity analysis algorithms (5×BMC, 9×IC3/PDR) in state-of-the-art model checking tools
(ABC, nuXmv, IIMC, IC3Ref).

Contributions. The contributions of our work are four-fold.

1. We propose heuristics that leverage assumption handling in SAT solvers for faster
convergence and scalability of Backward-CAR (Section 3).

2. An extensive experimental analysis on real-world benchmarks supports our per-
formance claims, and also gives a broad comparative overview of state-of-the-art
algorithms for unsafety checking (Section 4).

3. We make all our tools, experiment data, and analysis publicly available.
4. A modified clause generalization procedure in IC3/PDR based on our heuristics,

that may help improve scalability (Section 5).



2 Preliminaries

A Boolean transition system Sys is a tuple (V, I, T ), where V is a set of Boolean vari-
ables, and every state s of the system is in 2V , the set of truth assignments to variables
in V . Let V ′ be the set of primed variables, then T is a Boolean formula over V ∪ V ′,
denoting the transition relation of the system. We say that state s2 is a successor of state
s1, denoted (s1, s2) ∈ T , iff s1 ∪ s′2 |= T . The variables and their negations are called
literals. A conjunction of literals is called a cube. The negation of a cube is a clause. A
cube and clause are sets of literals we conjunct and disjunct, respectively.

A path (of length k) in Sys is a finite state sequence s1, s2, . . . , sk, where each
(si, si+1)(1 ≤ i ≤ k − 1) is in T . A state t in Sys is reachable if there exists a path
such that sk = t. Given a Boolean transition system Sys = (V, I, T ) and a safety
property P , which is a Boolean formula over V , the system is called safe if P holds in
all reachable states of Sys, and otherwise it is called unsafe.

Let X ⊆ 2V be a set of states in Sys. We define R(X) = {s′ | (s, s′) ∈
T where s ∈ X}, i.e., R(X) is the set of successors of states in X . Conversely, we
define R−1(X) = {s | (s, s′) ∈ T where s′ ∈ X}, i.e., R−1(X) is the set of predeces-
sors of states in X . Recursively, we define R0(X) = X and Ri(X) = R(Ri−1(X))
for i > 0. The notations of R−i(X) is defined analogously.

Let v be a vector of literals indexed from 0. We use v[i] to represent the i-th element
of v, v.size for the size of v and v.index(l) for the index of a literal l ∈ v. The
intersection of two vectors v1 ∩ v2 is a new vector v such that (1) l ∈ v ⇔ (l ∈ v1
∧ l ∈ v2), and (2) v.index(l1) < v.index(l2) ⇔ v1.index(l1) < v1.index(l2). We
say v2 is a subvector of v1, if size(v2) ≤ size(v1) and ∃n.v1[n + i] = v2[i] for
0 ≤ i < v2.size. In particular, we say v2 is the head (resp. tail) of v1 if v2 is a
subvector of v1 and n = 0 (resp. n = v1.size − v2.size). Lastly, we say that a set of
states S is diverse if

⋂
t∈S t = ∅.

2.1 SAT with Assumptions

In our formulation, we consider SAT queries of the form SAT(A,B), where B is a CNF
formula, and A is a cube. A query with no assumptions is simply written as SAT (∅, B).
Essentially, the query SAT(A,B) is equivalent to SAT(A ∧B) but the implementation
is typically more efficient. If A ∧B is

1. SAT, get assignment() returns a satisfying assignment to literals in A and B.
2. UNSAT, get unsat core() returns a unsatisfiable core C of the literals in A, such

that C ⊆ A, and C ∧B is UNSAT.

We abstract the implementation details of the underlying SAT solver, and assume inter-
action using the above functions.

2.2 Complementary Approximate Reachability

The CAR framework performs reachability analysis in both forward and backward di-
rections. It maintains over- and under- approximate state sequences to perform safety
and unsafety checking. CAR can be implemented in both forward (Forward-CAR) or



Table 1: Frame Sequences in Backward-CAR
F-sequence

(under)
B-sequence

(over)
Init F0 = I B0 = ¬P
Constraint Fi+1 ⊆ R(Fi) Bi+1 ⊇ R−1(Bi)

Safety Check - ∃i ·Bi+1 ⊆
⋃

0≤j≤i
Bj

Unsafety Check ∃i · Fi ∩ ¬P 6= ∅ -

backward (Backward-CAR) modes. We focus on Backward-CAR, hereby referred to
as just CAR (refer [24] for details on Forward-CAR and correctness proofs). Given
Sys = (V, I, T ), and a safety property P , the over-approximate state frame sequence,
B-sequence, stores states that can reach the bad states ¬P , while the under-approximate
frame sequence, F-sequence, stores states reachable from the initial state I . Frame Bi

is the set of states that can reach the bad states, whereas, Fi is the set of states reach-
able from the initial states, in i time-steps. The states in Bi and Fi are represented as
a conjunction of clauses (CNF) and disjunction of cubes (DNF), respectively. Table 1
summarizes the constraints and safety checking conditions of the two sequences.

3 Algorithm and Proposed Heuristics

The CAR algorithm incrementally builds the B-sequence and F-sequence by repeated
calls to the SAT solver. The system is considered: unsafe when a state in the F-sequence
intersects with the bad states, and safe when all states that can reach the bad states have
been added to the B-sequence. We first describe the CAR algorithm and the motivation
for our heuristics, followed by the description of the proposed heuristics.

3.1 Algorithm Description

The main CAR procedure is shown in lines 1–7 of Algorithm 1. It takes as input
Sys = (V, I, T ) and a safety property P . The procedure first checks for any 0-length
counterexample (line 1). The frame sequences are then initialized per Table.1. The main
loop of CAR (lines 3–7) iteratively checks both unsafety and safety. For unsafety check-
ing, CAR picks a state s from the F-sequence and checks if it can reach the bad states
in UNSAFECHECK (lines 4–5). The PICKSTATE function enumerates states in the F-
sequence (line 8). Subsequently, SAFECHECK evaluates if all states that can reach the
bad states have been added to the B-sequence (line 6).

The UNSAFECHECK procedure of lines 8–17 takes as input a state s in the F-
sequence, and the current frame i in the B-sequence, and the maximum depth k of
the B-sequence. Let’s assume ŝ = s (line 9). The procedure checks if state s can reach
states in Bi using the query SAT (s, T ∧B′i) (line 10). If SAT, the assignment is a state
t such that (s, t) ∈ T . If i = 0, then state t is a bad state (intersects B0) and we have
found a counterexample. Otherwise, t is added to the F-sequence, and the procedure
recursively checks if t can reach a state in Bi−1 (lines 13–14). If UNSAT, the negation
of the unsat core c ⊆ s is added to Bi+1 (lines 15–16). Note that ¬c represents the
over-approximation of states that cannot reach the bad states and are blocked at Bi+1.



Alg. 1 Complementary Approximate Reachability (Backward)

1: if SAT (I,¬P ) is satisfiable then return unsafe;
2: F0 := I , B0 := ¬P , k := 0;
3: while true do
4: while ( Cube s = PICKSTATE (F )) 6= ∅ do . state enumeration
5: if UNSAFECHECK(s, k, k) then return unsafe;
6: if SAFECHECK (k) then return safe;
7: k := k + 1 and Bk := ¬P ; . extend B-sequence

8: procedure UNSAFECHECK(s, i, k)
9: Cube ŝ := REORDER(s); . run proposed heuristics, by default ŝ := s

10: while SAT (ŝ, T ∧B′i) do
11: if i = 0 then return true; . reached bad state
12: Cube t = get assignment(); . get SAT assignment
13: Fj+1 := Fj+1 ∪ t supposing s is in Fj (j ≥ 0); . extend and add to F-sequence
14: if UNSAFECHECK (t, i− 1, k) then return true;
15: Cube c :=get unsat core() . c ⊆ s is the UNSAT assumptions
16: Bi+1 := Bi+1 ∩ ¬c; . add to B-sequence
17: return false;

18: procedure SAFECHECK(k)
19: i = 0;
20: while i < k do . no new states can be added
21: if not SAT (∅,¬(Bi+1 ⇒ (

∨
0≤j≤i

Bj))) then return true;

22: return false;

The SAFECHECK procedure of lines 18–22 takes as input the maximum depth k
of the B-sequence. By enumerating 0 ≤ i ≤ k, the safety check in Table 1 for the
B-sequence is reduced to SAT checking of a Boolean formula (line 21). If UNSAT,
all states that reach the bad states have been added to Bi+1, and the design is safe.
Otherwise, the procedure extends the B-sequence (line 7) and continues by picking a
new state s from the F-sequence.

The successive blocking of states in Bi+1 leads to faster convergence of CAR;
fewer spurious states that don’t reach a bad state. We want to find a minimal unsat
core (MUC) c such that ¬c blocks the maximum number of states in Bi+1, i.e., tighten
the over approximation of states that lead to a bad state. However, computing MUC is
expensive [24]. A straightforward solution is to drop the literals in c one-by-one and
check whether the UNSAT result is preserved. However, this solution is inefficient [23];
most attempts to find a smaller UC are unsuccessful and add to the overall runtime.
Our heuristics: intersection and rotation can find smaller UC with negligible runtime
overhead. Our heuristics take advantage of how modern SAT solvers handle assumption
literals. Minisat [17], for example, stores the assumption literals as a vector and applies
Unit Propagation [15] starting from the first literal in the vector. Therefore, literals that
appear to the front of the vector have a higher chance of being included in the unsat
core, provided the SAT query is UNSAT, compared to literals towards the end. Consider
the Boolean formula of line 10 and let c0 ⊆ s be the unsat core. Let c1 ⊂ c0 be a
smaller cube. If we order the assumption literals in line 10 such that c1 is the head of
the new vector, there is a higher chance that the UC will contain literals from c1. This
assumption literal ordering technique is the primary motivation of our heuristics.



intersection

rotation
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s-c

Fig. 1: Literal reordering in heuristics. We assume the SAT is SAT (ŝ, T ∧ B′i), where ŝ is gen-
erated by the heuristics by reordering literals in enumerated state s, ¬c is the last added clause in
Bi+1 (intersection), and vi+1 is the vector associated with Bi+1 (rotation).

3.2 Intersection and Rotation Heuristics

Let ¬c0 be the last clause added to Bi+1, i.e., c0 is a cube and c0 ∧ T ∧ B′i is UNSAT.
If c0 is minimal we cannot reduce it. Otherwise, we can make c0 smaller by dropping
existing literals to get c1. The clause ¬c1 is weaker than clause ¬c0 and therefore blocks
more states at Bi+1. The heuristics carefully reorder the assumption literals in s (line
10) to generate ŝ as shown in Fig. 1.

Intersection Heuristic. Given a state s and the last added clause ¬c in Bi+1, let ŝ be a
new assumption vector such that c ∩ s is the head, and s − c is the tail of ŝ. We pick
the last added clause in Bi+1 to avoid overhead of selection among different clauses in
Bi+1, however, other clauses can also be used. Therefore, in SAT (ŝ, T ∧ Bi) literals
from c∩ s have a higher chance to be included in the unsat query if the query is UNSAT.
It is important to note that ŝ and s have the same literals but differ in their ordering in
the assumption vector, thus preserving the satisfiability result.

Rotation Heuristic. Every call to UNSAFECHECK may generate a state t reachable
from the input states. Ideally, we want these states to explore disjoint parts of the state
space in the quest to find a path that reaches the bad states. The rotation heuristic
helps in generating such diverse states. Each Bi (i > 0) is associated with a vector
vi to store the assumptions literals for the most recent SAT query involving Bi−1. For
example, vi is equal to the enumerated state s1 in the F-sequence that triggers the SAT
query SAT (s1, T ∧ B′i−1). Subsequently, for Bi−1 and a new enumerated state s2,
we generate ŝ such that vi ∩ s2 is the head and s2 − (vi ∩ s2) is the tail of v̂i as
shown in Fig. 1. Note that ŝ and s2 have the same literals. Lastly, we update vi to
ŝ. The rotation heuristic generates diverse states as follows. For frame Bi in the B-
sequence, let S be the set of generated states in the SAT queries and C =

⋂
S be the

set of common literals in states. Let c be the vector of literals in C. Assume x is an
enumerated state in the F-sequence and the query SAT (x̂, T ∧B′i−1) is UNSAT. Based
on rotation literal reordering, c is the head of x̂. The returned unsat core u is added to
Bi. For a subsequent enumerated state y and frame Bi, a new state t is generated if the
query SAT (ŷ, T,Bi) is SAT. The new state satisfies t 6⊇ u. Ideally, if c ⊇ u is true, it
is guaranteed that t ∩ c 6= c. The state t is added to S, and therefore

⋂
(S ∪ {t}) ⊂ C,

i.e. the number of common literals is reduced. After several satisfiable SAT calls with
different enumerated states and Bi, we will have C = ∅.



Combination of Intersection and Rotation Heuristics. The intersection and rotation
heuristics have complementary strengths: intersection minimizes spurious state hits
that do not reach bad states, while rotation generates diverse states reachable from the
initial states. We use a combination to take advantage of their strength. For an enumer-
ated states s we generate ŝ as shown in Fig. 1. Let ¬c be the last added clauses in Bi+1

(intersection) and vector vi+1 is associated with Bi+1 (rotation). Then c ∩ s is the
head of ŝ, and ŝI is the tail where ŝI is generated from s by the rotation heuristic. Note
that ŝ may contain redundant literals but will preserve the satisfiability result of s.

4 Performance Evaluation

We incorporate the proposed heuristics in SimpleCAR [23]. Recall state enumeration
in line 10 of Alg. 1. As the number of states stored in the F-sequence increase, the
order of selection of state s becomes vital. We evaluate two simple strategies for state
enumeration in the PICKSTATE procedure: begin selects states from the first element
in F0 to the last element in Fn, and end selects state from the last element in Fn to the
first element in F0. Therefore, we consider six different implementations of CAR with
varying assumption ordering heuristics and state enumeration strategies.

4.1 Experiment Set-Up

We compare our additions to SimpleCAR with ABC 1.01 [13], IIMC4, IC3Ref [4] and
Simplic3 [19]. The evalauted checkers algorithms together with the respective running
configurations are listed in Table 2. All checkers use the Minisat [5,17] solver. There
are three implementations of BMC in ABC: bmc and bmc2 for static and dynamic
unrolling, respectively, and bmc3 for dynamic unrolling plus the termination after ex-
hausted state exploration. 5 The BMC in Simplic3 and IIMC has the same functionality
as bmc2 and bmc3 in ABC, respectively.

We evaluate all tools against 748 benchmarks in the aiger format [10] from the SIN-
GLE safety property track of the HWMCC in 2015 [2] and 2017 [3]. We primarily focus
on unsafety checking in our analysis. We check correctness in two ways: (1) We use the
aigsim [1] to check whether the counterexample generated for unsafe instances is a
real counterexample by simulation, and (2) For inconsistent results (safe and unsafe for
the same benchmark by at least two different tools) we attempt to simulate the unsafe
counterexample, and if successful, report an error for the tool that returns safe. The
experiments were performed on Rice University’s DavinCI cluster6, which comprises
of 192 nodes running at 2.83GHz, 48GB of memory and running RedHat 6.0. We set
the memory limit to 8GB with a wall-time limit of an hour for each benchmark. Each
model checking run had exclusive access to a node. All artifacts for reproducibility and
detailed experimental results for both safety and unsafety checking are available on the
paper website at http://temporallogic.org/research/VSTTE19/.

4 We use version 2.0 available at https://ryanmb.bitbucket.io/truss/ [7]– simi-
lar to the version available at https://github.com/mgudemann/iimc with addition
of Quip [21] and Backward IC3/PDR.

5 From personal communication with Alan Mishchenko.
6 https://oit.rice.edu/davinci

https://ryanmb.bitbucket.io/truss/
https://github.com/mgudemann/iimc


Table 2: Tools and algorithms (with category) evaluated in the experiments.
Tool Algorithm Configuration Flags

ABC

BMC (abc-bmc) -c ‘bmc’

BMC (abc-bmc2) -c ‘bmc2’

BMC (abc-bmc3) -c ‘bmc3’

PDR (abc-pdr) -c ‘pdr’

IIMC

BMC (iimc-bmc) -t bmc --bmc timeout 3600

IC3 (iimc-ic3) -t ic3

Quip [21] (iimc-quip) -t quip

Backward IC3 (iimc-ic3r) -t ic3r

IC3Ref IC3 (ic3-ref) -b

Simplic3

BMC (simplic3-bmc) -a bmc

IC3 (simplic3-best1) -s minisat -m 1 -u 4 -I 0 -O 1 -c 1 -p
1 -d 2 -G 1 -P 1 -A 100

IC3 (simplic3-best2)
-s minisat -m 1 -u 4 -I 1 -D 0 -g 1 -X
0 -O 1 -c 0 -p 1 -d 2 -G 1 -P 1 -A 100

IC3 (simplic3-best3) -s minisat -m 1 -u 4 -I 0 -O 1 -c 0 -p
1 -d 2 -G 1 -P 1 -A 100 -a aic3

Avy [27] (simplic3-avy) -a avy

SimpleCAR

Backward CAR (simpcar-bb) -b -begin

Backward CAR (simpcar-be) -b -end

Backward CAR (simpcar-bbi) -b -begin -intersection

Backward CAR (simpcar-bei) -b -end -intersection

Backward CAR (simpcar-bbr) -b -begin -rotation

Backward CAR (simpcar-ber) -b -end -rotation

Backward CAR (simpcar-bbir) -b -begin -intersection -rotation

Backward CAR (simpcar-beir) -b -end -intersection -rotation

4.2 Experimental Results

Performance of CAR. We compare the performance of six versions of CAR from this
paper, and 2 from [23]: simpcar-bb and simpcar-be. The results are summarized
in Fig. 2a. simplecar-bbir solves the most number of unsafe instances (138) than
any other CAR implementation, while the virtual best CAR (best-car), which in-
cludes the six CAR implementations proposed in this paper, solves 155 instances. In
contrast, the CAR implementations from [23] solves 124 instances; these instances are
solved by all six CAR implementations from this paper, and on average take∼30% less
time. We also measure the average size of unsat cores generated by all CAR implemen-
tations at each frame in B-sequence. For the same benchmark, best-car generates
on average ∼14% smaller UC compared to [23]. simpcar-bbir that uses a combi-
nation of intersection and rotation heuristics achieves the highest compression in UC
size: on average ∼20% smaller UC. This supports our claim that smaller UC in the
B-sequence lead to faster convergence, and validates the effectivess of our heuristics in
generating smaller unsat cores and diverse states with negligible runtime overhead.

Performance of BMC. The performance of five different BMC implementations is
summarized in Fig. 2b. abc-bmc2 solves all instances that are solved by abc-bmc,
iimc-bmc and simplic3-bmc for a total of 155. abc-bmc3 is able to solve one
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Fig. 2: Number of unsafe benchmarks solved. The “category-uniquely solved” benchmarks are
not solved by any other implementation in the same category. The “uniquely solved” benchmarks
are not solved by any other algorithm category.

instance not solved by abc-bmc2. The virtual best BMC (best-bmc, which includes
all five BMC implementations, solves 156 instances.

Performance of IC3/PDR. We found an error in simplic3-best3 on the instance
“6s309b034”, for which abc-bmc3 returns unsafe (the counterexample passes the
check of aigsim) but simplic3-best3 returns safe. The performances of nine
different IC3/PDR implementations is summarized in Fig. 2c. simplic3-best2
solves the most number of unsafe instances (131) than any other IC3/PDR implemen-
tation, while the virtual best IC3/PDR (best-ic3), which includes all nine IC3/PDR
implementations, solves 149 instances.

Comparison of CAR and BMC. The best-bmc and best-car implementations
solve 156 and 155 instances, respectively. However, best-bmc solves 15 instances not
solved by best-car, and best-car solves 14 instances not solved by best-bmc.
The virtual best of BMC and CAR solves 170 instances.

Comparison of CAR and IC3/PDR. There are 20 instances solved by best-car that
are not solved by best-ic3, whereas, best-ic3 solves 14 instances not solved by
best-car. Both Reverse-IC3/PDR (iimc-ic3r) and Backward-CAR perform
reachability analysis in the reverse direction. iimc-ic3r solves four instances not
solved by any other IC3/PDR implementation; all implementations of CAR solves
these 4 instances. The virtual best of IC3/PDR and CAR solves 169 instances.



The three algorithm portfolios complement each other as summarized in Fig. 2d. BMC
can solve 7 “6s” instances not solved by CAR and IC3/PDR, whereas, CAR can solve
four “6s” and three “oski” instances not solved by IC3/PDR and BMC. Overall, the vir-
tual best of BMC, IC3/PDR, and CAR solves 170 unsafe instances. Our heuristics have
negligble runtime overhead and significantly boost the performance of CAR making it
an integral part of any algorithm portfolio for unsafety checking.

5 Discussion and Future Work

Invariant checking algorithms, like IC3/PDR, maintain a frame sequence F0, F1, . . . , Fi

to store over-approximate states reachable in up to i steps. The sequence is refined it-
eratively by tightening the over-approximation for every step, i.e., blocking unreach-
able states. IC3/PDR terminates when an inductive invariant is found. For more details
on IC3/PDR, we refer the reader to [12,16,19]. Several techniques [11,20] for faster
IC3/PDR convergence try to block more than one state, instead of directly using the
UC from the SAT solver, by clause generalization.

Alg. 2 IC3/PDR Generalization
GENERALIZE-ITER(Clause g, i)

1: done := False; Cube s = ¬g;
2: for iter := 1 to max iter do
3: if done then break
4: done := True;
5: Cube ŝ = REORDER(s);
6: if not SAT (∅, I ∧ ŝ) and

not SAT (ŝ′, Fi ∧ T ∧ ¬ŝ) then
7: Cube b := get unsat core()
8: while SAT (∅, b ∧ I) do
9: pick l ∈ ŝ \ b; set b := b ∪ {l};

10: s := b; done = False; break

The intersection heuristic can also
benefit IC3/PDR by improving the effi-
ciency of generalization. Alg. 2 describes a
procedure to perform iterative generaliza-
tion [13,19] using intersection. The liter-
als in the clause to generalize are reorderd
(line 5). The last added generalized clause
¬c in Fi can be used for intersection to
generate the head and tail for vector ŝ.
Note that the reordering of s to ŝ in re-
peated iterations of the loop (lines 2–10)
mimics the same behavior as dropping lit-
erals from g, albeit, cleverly. The literal re-
ordering may generate a smaller inductive clause ¬b compared to ¬c that tigthens the
over-approximation Fi, hence, leading to faster convergence of IC3/PDR.

SAT solvers use the VSIDS [26] heuristic to score variables in a SAT query. The
variables with high scores are preferred over variables with low scores for branch-
ing. Our heuristics implicitly perform variable scoring by picking literals from recently
added clauses to the B-sequence, however, are external to the SAT solver. A better syn-
ergy between VSIDS in the SAT solver and our heuristics may generate even smaller
UC. The state enumeration strategy also impacts performance. Quip [21] also suf-
fers from this bottleneck: the algorithm discards states it cannot afford.7 VSIDS can
help generate diverse states by enumerating diverse satisfying assignments. CAR im-
plementations with the intersection and rotation heuristics perform comparably, but
disjointly; for example, simpcar-beir is unable to solve six instances solved by
simpcar-bei. Evaluating model structure, and clausal learning as CAR progresses
to better utilize the combination of the two heuristics is a promising research direction.

7 Discussion with Alexander Ivrii
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