
Model-Guided Synthesis for LTL over Finite
Traces

Shengping Xiao1, Yongkang Li1, Xinyue Huang1, Yicong Xu1, Jianwen Li1⋆,
Geguang Pu1,2, Ofer Strichman3, and Moshe Y. Vardi4

1 East China Normal University, Shanghai, China
{spxiao,51265902012,52265902016,51215902150}@stu.ecnu.edu.cn,

{jwli,ggpu}@sei.ecnu.edu.cn
2 Shanghai Trusted Industrial Control Platform Co., Ltd, Shanghai, China

3 Technion, Haifa, Israel
ofers@technion.ac.il

4 Rice University, Houston, USA
vardi@cs.rice.edu

Abstract. Satisfiability and synthesis are two fundamental problems for
Linear Temporal Logic, both of which can be solved on the automaton
constructed from the input formula. In general, satisfiability is easier
than synthesis in both theory and practice, as satisfiability needs only
to find a satisfying trace, while synthesis has to find a winning strategy.
This paper presents a novel technique called MoGuS, which improves
the performance of synthesis for LTLf , a variant of LTL interpreted
over finite traces, by repeatedly invoking an LTLf satisfiability checker
to guide its search for a winning strategy. Satiisfiabiity checkers have
not been used before in the context of LTLf synthesis. MoGuS com-
putes a satisfying trace of the input formula, and then uses the formula-
progression technique to compute the states on the fly in the automaton
run. It then checks whether there exists a winning strategy from each of
the states. If not, the current state is marked as a ‘failure’ state (as it can
never produce a winning strategy), the checking rolls back to its prede-
cessor state, and the process repeats. MoGuS returns ‘Realizable’ if the
initial state turns out to be winning, and ‘Unrealizable’ otherwise. We
conducted an extensive experimental evaluation of MoGuS by comparing
it to different state-of-the-art LTLf synthesis algorithms on a large set
of benchmarks. The results show that MoGuS has the most stable and
the best overall performance on the tested benchmarks.

1 Introduction

Temporal synthesis is the automated construction of a reactive system from a
given temporal logic formula (specification), e.g., LTL [38], such that the interac-
tive behaviors between the system and the external environment are guaranteed
to satisfy the specification [18,39]. The problem of determining whether such a

⋆ Jianwen Li is the corresponding author.

2 S. Xiao et al.

system exists is called realizability. LTL realizability and synthesis are major
research topics in formal methods, and fruitful works have been accomplished
on both the theoretical and practical aspects, e.g., [8,45,36], to name a few. In
recent years, an annual synthesis competition [1] has played an important role
in motivating tool development in this area. Nevertheless, LTL synthesis is still
considered a very challenging problem, as generating deterministic automata
from LTL specifications, which is a critical part of the algorithmic solution,
involves a doubly-exponential blow-up [2].

An LTL formula is interpreted over infinite traces, so the constructed au-
tomaton from the formula has to accept infinite traces as well. Such automata
with infinite accepting conditions, e.g., Büchi [11], are notorious for their chal-
lenging determinization, e.g., Safra Construction [41], which is a barrier to ef-
fective LTL realizability/synthesis. A recent argument, however, has been made
that synthesis of the system with finite behaviors is sufficient in practice [20,28].

LTLf , which is defined over finite traces, has emerged as a popular logic
in AI-related domains since its invention [20]. Given an LTLf formula φ, there
exists a non-deterministic finite automaton (nfa) that represents φ’s language.
Determinization of an nfa can be performed via the classical subset construction
[28]. Although the worst-case complexity remains the same (2EXPTIME), this
leads to a much simpler synthesis procedure [45], as we will discuss below. Indeed,
LTLf has emerged as a popular temporal description language in AI-related do-
mains, especially for specifying motion planning problems [16,14,22,3,4,15,46,27].
LTLf synthesis is then used to build a model that satisfies these specifications.

Recently, several works have been conducted to study the theory and practice
of fundamental problems related to LTLf , e.g., translation to automata [42,21],
satisfiability checking [34,33,35], and synthesis [28,45,43]. The asymptotic com-
plexity of both LTLf satisfiability and LTLf synthesis is the same as in LTL,
namely PSPACE-complete and 2EXPTIME-complete, respectively [20,28]. The
focus of this paper is on using LTLf satisfiability checking to speed up LTLf

synthesis and realizability.

There are so far two kinds of approaches to solving LTLf synthesis. The
first one is bottom-up [45,7], which first constructs the whole (minimal) dfa
for the input formula, using the efficient dfa-construction tool MONA [30], and
then computes all winning states in the dfa back from the accepting states.
Representative LTLf synthesizers based on this approach include Lisa [7] and
Lydia [21]. The second one is top-down [43,29], which takes the input formula
as the initial state, and then computes the remaining states of the dfa on-the-
fly, while rolling back once a winning/failure state is identified. Representative
LTLf synthesizers based on this approach include OLFS [43] and Cynthia [29].
Both solutions return ‘Realizable’ iff the initial state is winning. According to
previous studies [43,29], the top-down solution performs better in some particular
benchmarks than the bottom-up one, while in general the latter approach gains
a better overall performance in the selected benchmarks where synthesis from
the formulas is not challenging enough.

Model-Guided Synthesis for LTL over Finite Traces 3

The on-the-fly top-down solution has been conducted by using either SAT [24]
or Sentential Decision Diagram (SDD) [19] techniques. The former utilizes SAT
solvers to compute exactly one (deterministic) state at a time, making the whole
framework very flexible. Using SAT solvers for state enumeration is, however,
not quite efficient, as the SAT solver cannot distinguish between the system
and environment variables. As a result, the satisfying assignment that it finds
is rather arbitrary from the perspective of the synthesis process. Meanwhile,
the latter solution leverages SDD to encode the variables’ information in order,
such that the enumerated dfa transitions (with states) can be more compact.
As shown in [29], the SDD-based approach is able to outperform the SAT-based
one on a considerable number of test instances. Nevertheless, the drawback of
this approach is that one SDD computation has to generate all of the one-step
successors, which is a much more computationally expensive operation than a
single SAT call. So the question is whether there is a way to compute states in
a light way, and enumerate the transitions and states in a more ‘targeted’ way,
which will lead to faster convergence.

This paper tries to address this question and proposes to conduct LTLf

synthesis via an algorithm that is based on multiple LTLf satisfiability checks,
hence leveraging the relative efficiency of those tools. We call this approach Mo-
GuS (Model-Guided Synthesis). Instead of computing only one state (and tran-
sition), MoGuS utilizes an LTLf satisfiability solver to generate one satisfying
trace at a time, which corresponds to a sequence of states and transitions. The
insight is that a satisfying trace is more likely to be compatible with a winning
strategy, which can potentially make the state search more precise. MoGuS then
progresses backward on the satisfying state sequence, trying each time to prove
that the state is winning. If it is not, it asks the LTLf satisfiability solver for
a new assignment that does not go through that state (which we call a ‘failure’
state), by blocking it. This process is repeated until the initial state becomes
winning, or the formula becomes unsatisfiable. In the former case, the formula
is declared to be ‘Realizable’, and in the latter, ‘Unrealizable’. The correctness
of our procedure relies on the fact that if a satisfying trace runs across a failure
state, it cannot be produced by a winning strategy and hence can be blocked.

Generally speaking, MoGuS is a top-down solution for LTLf synthesis. Com-
pared to the SAT-based approach, it can enumerate states and transitions more
precisely, as the search inside is guided by a satisfying trace that is more likely to
target a winning state. Compared to the SDD-based approach, MoGuS is more
flexible in computing states and transitions, as the state-of-the-art satisfiability
solvers, e.g., aaltaf [33], provide a way to compute one state (and transition) at
a time.

We implemented MoGuS inside the tool MoGuSer and evaluated its perfor-
mance by comparing it to the state-of-the-art LTLf synthesis solvers Cynthia,
Lisa, and Lydia on the collected benchmarks from [29] (1454 in total), as well as
the Ascending benchmarks (1800 in total) generated by Spot [23] for the purpose

4 S. Xiao et al.

of scalability testing5. For the collected benchmarks, MoGuSer solves a total of
1287 (out of 1454) instances, which is twice that solved by Cynthia (605) but
slightly less than that solved by Lisa (1316) and Lydia (1339). For the Ascending
benchmarks, MoGuSer solves a total of 1559 (out of 1800) cases, which is better
than that solved by all other solvers, i.e., Cynthia (1430), Lisa (1101), Lydia (916).
Our tool MoGuSer has the most stable and the best overall performance in these
two evaluations.

This paper is organized as follows. The next section introduces preliminaries.
Section 3 presents the construction from an LTLf formula to its corresponding
tdfa, by leveraging the formula progression technique. Section 4 describes the
details of MoGuS and its correctness guarantee. Section 5 shows the experimental
results. And we discuss a brief history of LTL synthesis in Section 6. Finally,
Section 7 summarizes the contributions and discusses future work.

2 Preliminaries

2.1 LTL over Finite Traces (LTLf)

Linear Temporal Logic over finite traces, or LTLf [20], extends propositional
logic with finite-horizon temporal connectives. Generally speaking, LTLf is a
variant of Linear Temporal Logic (LTL) [38] that is interpreted over finite traces.
Given a set of atomic propositions P, the syntax of LTLf is identical to LTL,
and defined as:

φ ::= tt | p | ¬φ | φ ∧ φ | ◦φ | φU φ

where tt represents the true formula, p ∈ P is an atomic proposition, ¬ repre-
sents negation, ∧ represents and, ◦ represents the strong Next operator and U
represents the Until operator. We also have the corresponding dual operators
ff (false) for tt , ∨ (or) for ∧, • (weak Next) for ◦ and R (Release) for U .
Moreover, we use the notation Gφ (Global) and Fφ (Future) to represent ff Rφ
and tt U φ, respectively. Notably, ◦ is the standard Next operator, while • is
weak Next ; ◦ requires the existence of a successor instance, while • does not.
Thus •ϕ is always true in the last instance of a finite trace, since no successor
exists there.

A finite trace ρ = ρ[0], ρ[1], · · · , ρ[n] is a sequence of propositional interpre-
tations (sets), in which ρ[m] ∈ 2P (0 ≤ m < |ρ|) is the m-th interpretation of
ρ, and |ρ| = n + 1 represents the length of ρ. Intuitively, ρ[m] is interpreted as
the set of propositions which are true at instance m. We denote ρi to represent
ρ[0], ρ[1], . . . , ρ[i− 1] (i ≥ 1), which is the prefix of ρ to position i (not including
i), and ρi to represent ρ[i], ρ[i+1], · · · , ρ[n], which is the suffix of ρ from position
i (including i). Two finite traces, ρ1 and ρ2, can be concatenated to one trace ρ,
denoted by ρ = ρ1 · ρ2.

5 From the preliminary evaluations, our previous synthesizer OLFS [43] performs much
worse than other tested tools, so it is excluded in the comparison.

Model-Guided Synthesis for LTL over Finite Traces 5

LTLf formulas are interpreted over finite traces. For a finite trace ρ and an
LTLf formula φ, we define the satisfaction relation ρ |= φ (i.e., ρ is a model of
φ) as follows:
– ρ |= tt ;
– ρ |= p iff p ∈ ρ[0], where p is an atomic proposition;
– ρ |= ¬φ iff ρ ̸|= φ;
– ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
– ρ |= ◦φ iff |ρ| > 1 and ρ1 |= φ;
– ρ |= φ1 U φ2 iff there exists i with 0 ≤ i < |ρ| such that ρi |= φ2, and for

every j with 0 ≤ j < i it holds that ρj |= φ1.

The set of finite traces that satisfy LTLf formula φ is the language of φ, denoted
as L(φ) = {ρ ∈ (2P)+ | ρ |= φ}. Two LTLf formulas φ1 and φ2 are semantically
equivalent, denoted as φ1 ≡ φ2, iff for every finite trace ρ, ρ |= φ1 iff ρ |= φ2.
A literal is an atom p ∈ P or its negation (¬p). We say an LTLf formula is in
Negation Normal Form (NNF), if the negation operator appears only in front
of an atom. Every LTLf formula can be converted into its NNF in linear time.
We assume that all LTLf formulas are in NNF in this paper.

2.2 Transition-based DFA

The Transition-based Deterministic Finite Automaton (tdfa) is a variant of the
Deterministic Finite Automaton (dfa) [42].
Definition 1 (Transition-based dfa). A transition-based dfa (tdfa) is a
tuple A = (2P , S, s0, δ, T) where
– 2P is the alphabet;
– S is the set of states;
– s0 ∈ S is the initial state;
– δ : S × 2P → S is the transition function;
– T ⊆ δ is the set of accepting transitions.

For simplicity, we use the notation s1
ω−→ s2 to denote δ(s1, ω) = s2. The run

r of a tdfa A on a finite trace ρ = ρ[0], ρ[1], · · · , ρ[n] ∈ (2P)+ is a finite state

sequence r = s0, s1, · · · , sn such that s0 is the initial state, si
ρ[i]−−→ si+1 is true for

0 ≤ i < n . Note that runs of tdfa do not need to include the destination state of
the last transition, which is implicitly sn+1 = δ(sn, ρ[n]), since the starting state
(sn) together with the labels of the transition (ρ[n]) are sufficient to determine
the destination. r is called acyclic iff (si = sj) ⇔ (i = j) for 0 ≤ i, j < n. Also,
we say that ρ runs across si iff si is in the corresponding run r. The trace ρ is
accepted by A iff the corresponding run r ends with an accepting transition, i.e.,
δ(sn, ρ[n]) ∈ T . The set of finite traces accepted by a tdfa A is the language of
A, denoted as L(A).

According to [42], tdfa has the same expressiveness as the normal dfa, and
for an LTLf formula φ, there is a tdfa Aφ such that L(φ) = L(Aφ). As a result,
the LTLf satisfiability-checking problem can be solved on the corresponding
tdfa. That is, an LTLf formula φ is satisfiable iff there is a finite trace accepted
by its corresponding tdfa Aφ [42].

6 S. Xiao et al.

2.3 LTLf realizability, synthesis, and tdfa games

Definition 2 (LTLf realizability). Let φ be an LTLf formula whose alphabet
is P and X ,Y be two subsets of P such that X∩Y = ∅ and X∪Y = P. X is the set
of input variables controlled by the environment and Y is the set of output vari-
ables controlled by the system. φ is realizable with ⟨X ,Y⟩ if there exists a strategy
g : (2X)∗ → 2Y such that for an arbitrary infinite sequence λ = X0, X1, · · · ∈
(2X)ω of propositional interpretations over X , there is k > 0 such that ρ |= ϕ
holds, where ρ = (X0∪g(ϵ)), (X1∪g(X0)), · · · , (Xk∪g(X0, · · · , Xk−1)). (ϵ means
the empty trace.)

Less formally, an LTLf formula φ is realizable if there exists a winning strat-
egy g for the outputs, namely that for every sequence of inputs, its combination
with g’s outputs up to some k, satisfies φ (it can be a different value of k for
different input sequences). Notably, the synthesis defined above is called system-
first synthesis, which means that at each point the value of Y depends on the
value history of X. This paper focuses on the system-first synthesis.

The synthesis problem can be reduced to tdfa games [28,43] specified by
Aφ, with the help of definitions on the winning/failure states.

Definition 3 (System Winning/Failure State [43]). For a tdfa game spec-
ified by A = (2Y∪X , S, s0, δ, T), s ∈ S is a system winning state iff there is
Y ∈ 2Y such that for every X ∈ 2X , either δ(s, Y ∪ X) = s′ is an accepting
transition or s′ is a system winning state. State s is a system failure state iff s
is not a system winning state.

Theorem 1. Given an LTLf formula φ with ⟨X ,Y⟩, a tdfa Aφ = (2Y ×
2X , S, s0, δ, T) such that L(Aφ) = L(φ), and the tdfa game specified by Aφ, the
following are equivalent:

– φ with ⟨X ,Y⟩ is realizable;
– the system wins the game specified by Aφ;
– s0 is a system-winning state of the game specified by Aφ.

3 LTLf -to-tdfa via Progression

In our new framework MoGuS, we translate the formula to its tdfa via formula
progression. The progression technique originates in [5] for goal planning with
temporal logics, and a definition of LTLf progression has been used in [29]. Here
we adapt the progression to finite traces instead of single propositions and adjust
the translation process for tdfa.

Definition 4 (Formula Progression for LTLf). Given an LTLf formula φ
and a non-empty finite trace ρ, the progression formula fp(φ, ρ) is recursively
defined as follows:

– fp(tt , ρ) = tt and fp(ff , ρ) = ff ;

Model-Guided Synthesis for LTL over Finite Traces 7

– fp(p, ρ) = tt if p ∈ ρ[0]; fp(p, ρ) = ff if p /∈ ρ[0];
– fp(¬φ, ρ) = ¬fp(φ, ρ);
– fp(φ1 ∧ φ2, ρ) = fp(φ1, ρ) ∧ fp(φ2, ρ);
– fp(φ1 ∨ φ2, ρ) = fp(φ1, ρ) ∨ fp(φ2, ρ);
– fp(◦φ, ρ) = φ if |ρ| = 1; Else fp(◦φ, ρ) = fp(φ, ρ1);
– fp(•φ, ρ) = φ if |ρ| = 1; Else fp(•φ, ρ) = fp(φ, ρ1);
– fp(φ1 U φ2, ρ) = fp(φ2, ρ) ∨ (fp(φ1, ρ) ∧ fp(◦(φ1 U φ2), ρ));
– fp(φ1 Rφ2, ρ) = fp(φ2, ρ) ∧ (fp(φ1, ρ) ∨ fp(•(φ1 Rφ2), ρ)).

The following lemmas are not hard to obtain based on Definition 4, whose
proofs are omitted here.

Lemma 1. Given an LTLf formula φ and two non-empty finite traces ρ1 and
ρ2, ρ2 |= fp(φ, ρ1) implies ρ1 · ρ2 |= φ.

Lemma 2. Given an LTLf formula φ and two non-empty finite traces ρ1 and
ρ2, it holds that fp(fp(φ, ρ1), ρ2) = fp(φ, ρ1 · ρ2).

Lemma 3. Given an LTLf formula and a non-empty finite trace ρ, ρ |= φ
implies ρi |= fp(φ, ρi) for every 0 ≤ i < |ρ|.

Now we re-construct the tdfa for an LTLf formula.

Definition 5 (LTLf to tdfa). Given an LTLf formula φ, the tdfa Aφ is a
tuple (2P , S, δ, s0, T) such that

– 2P is the alphabet, where P is the set of atoms of φ;
– S = {φ} ∪

{
fp(φ, ρ) | ∀ρ ∈ (2P)+

}
is the set of states;

– s0 = φ is the initial state;
– δ : S × 2P → S is the transition function such that δ(s, σ) = fp(s, σ) for
s ∈ S and σ ∈ 2P (Here σ is considered a trace with length 1);

– T = {s1
σ−→ s2 ∈ δ | σ |= s1} is the set of accepting transitions.

Theorem 2. Given an LTLf formula φ and the tdfa Aφ constructed by Def-
inition 5, it holds that L(φ) = L(Aφ).

Proof. Let |ρ| = n + 1 (n ≥ 0) and the corresponding run r of Aφ on ρ is
s0, s1, . . . , sn, where s0 = φ.

(⇐) According to Definition 5, ρ is accepted by Aφ implies (ρn = ρ[n]) |= sn
and sn = fp(φ, ρn). Then from Lemma 1, we have (ρn · ρn = ρ) |= (s0 = φ).

(⇒) First from Definition 5, every fp(φ, ρi) for 0 ≤ i ≤ n is a state of
Aφ. Secondly, δ(fp(φ, ρi), ρ[i]) = fp(φ, ρi+1) is true for 0 ≤ i ≤ n, because
fp(φ, ρi+1) = fp(fp(φ, ρi), ρ[i]) is true (Lemma 2). Therefore, let si = fp(φ, ρi)
(0 ≤ i ≤ n) and the state sequence r = s0, s1, . . . , sn is a run of Aφ on ρ. Finally,
ρ |= φ implies that ρn |= (sn = fp(φ, ρn)) is true because of Lemma 3. So ρ is
accepted by Aφ. ⊓⊔

Theorem 3 (Complexity). Given an LTLf formula φ and the tdfa Aφ con-
structed by Definition 5, the size of Aφ is at most 22

|cl(φ)|
, where cl(φ) is the set

of all subformulas of φ.

8 S. Xiao et al.

Proof. From Definition 5, every state in Aφ excluding the initial one is computed
via progression. It is not hard to prove that every formula from progression can
be converted into the form of

∨∧
ψ where ψ ∈ cl(φ). Since there are at most

22
|cl(φ)|

formulas with the form
∨∧

ψ (including φ), the size of Aφ is also at
most 22

|cl(φ)|
. ⊓⊔

4 Guided LTLf Synthesis with Satisfiable Traces

The previous forward synthesis approaches [43,29] require determining whether
the state in the corresponding tdfa game is a winning or a failure state. In this
process, the edges from the state are explored enumeratively, which is performed
randomly without direction. By Definition 3, winning states are recursively de-
fined with its base case falling on the accepting edges of tdfa. Therefore, we
can intuitively infer that edges associated with some satisfiable traces are more
likely to make the current state determined as winning. Inspired by that, we
propose our new synthesis algorithm MoGuS (Model-Guided Synthesis). In the
following, we first illustrate our new synthesis approach at a high level with an
example (Sec. 4.1), introduce the details of the approach (Sec. 4.2), and then
run the algorithmic details using the example again (Sec. 4.3).

4.1 An Example

We will use the formula

φ = ◦F(◦a ∧ Gb) (1)

with X = {a} and Y = {b} as a running example. It is clearly unrealizable,
because no system can guarantee ◦a, since a is an input. In the beginning,
we cannot determine whether s0 is winning or failure and a finite trace ρ that
satisfies φ is computed by an LTLf satisfiability solver (Figure 1 (a)). Suppose
that ρ = a ∧ b, a ∧ b, a ∧ b. The corresponding tdfa run on ρ is r = s0, s1, s2,
where

s1 = F(◦a ∧ Gb), (2)

and

s2 = (a ∧ Gb) ∨ (◦F(◦a ∧ Gb)). (3)

We now check whether s2 is a winning state. As illustrated in Figure 1 (b), for
every Y ∈ 2Y there exists X ∈ 2X such that it forms a loop from s2. So it
concludes that s2 is a failure state and rolls back to s1. For Y = b, it leads to
a known failure state s2, and for Y = ¬b, it detects a loop (Figure 1 (c)). This
implies that s1 is a failure state. Similarly, the initial state s0 is found to be a
failure state, and then MoGuS returns ‘Unrealizable’.

Model-Guided Synthesis for LTL over Finite Traces 9

𝑠𝑠1

𝑏𝑏 ¬𝑏𝑏

𝑠𝑠2

𝑎𝑎

𝑏𝑏

¬𝑎𝑎 ¬𝑏𝑏

𝑠𝑠2

𝑠𝑠0

𝑠𝑠1

𝑠𝑠1

𝑠𝑠1

𝑏𝑏

𝑠𝑠2

𝑎𝑎

𝑏𝑏

¬𝑎𝑎 ¬𝑏𝑏

𝑠𝑠2

𝑠𝑠0

𝑠𝑠1

𝑠𝑠1

𝑏𝑏

𝑠𝑠2

𝑎𝑎

𝑏𝑏

𝑠𝑠0

(a) (b) (c)

𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Fig. 1: Given the input formula ◦F(◦a ∧ Gb) (recall that ◦ denotes strong
Next) with X = {a} and Y = {b}, these diagrams show the progression of
MoGuS(φ, ⟨X ,Y⟩) in its satisfiability-based search for a winning strategy. Dashed
circles represent loops, and points on the arrows represent accepting transitions.
For simplicity, we merge edges with the same successor, i.e., tt, b, and ¬b repre-
sent 4, 2, and 2 edges respectively. And here s0 = ◦F(◦a∧Gb), s1 = F(◦a∧Gb),
and s2 = (a ∧ Gb) ∨ (◦F(◦a ∧ Gb)).

4.2 The Synthesis Algorithm MoGuS

Given a formula φ with inputs X and outputs Y, we explore the tdfa by on-the-
fly construction and perform a top-down traversal of the search space. Every time
a tdfa state is visited, we first try to determine based on known information
whether it is winning, failure, or forming a loop. If one of these three cases
occurs, we backtrack to the previous state. Otherwise, we invoke the LTLf

satisfiability solver to find a satisfiable trace, subsequently exploring the states
in the corresponding tdfa run. This is the primary distinction from the approach
in [43]. Our search direction is guided by a satisfiable trace, rather than randomly
selected by the (Boolean) SAT solver.

Algorithm 1 shows the implementation of MoGuS. It first declares four global
sets: winning and failure to store the known winning and failure states respec-
tively, to_win to collect winning state-edge pairs ⟨s,X ∪ Y ⟩ such that X ∪Y |=
s or fp(s,X ∪ Y) is a winning state, and to_fail to collect state-edge pairs
⟨s,X ∪ Y ⟩ such that X ∪ Y ̸|= s and fp(s,X ∪ Y) is a failure state. to_win and
to_fail are maintained to compute the edge constraint (Line 8). At the main
entry of the algorithm, the parameter path refers to the state sequence that leads
from the initial state to the current state ψ.

At Line 5, MoGuS checks whether ψ is winning or failure currently based
on the state information collected so far, and Algorithm 2 presents the imple-
mentation of currentWinning. currentWinning(ψ) returns ‘Winning’ if (1) ψ
is already in winning, or (2) based on Definition 3, there is Y ∈ 2Y such that

10 S. Xiao et al.

X ∪ Y |= ψ holds or fp(ψ,X ∪ Y) is in winning, for every X ∈ 2X . During
the process, those transitions accepting or leading to a winning state are added
into to_win. The analogous process is performed to check whether ψ is a failure
state currently.

An edge constraint is computed for current ψ at Line 8, which blocks all
edges not requiring further exploration. Formally, edgeConstraint(ψ) assigns
edge_constraint as:

∧
Y ∈Yf

¬Y ∧
∧

Y ∈Yu

Y →
∧

X∈Xw(Y)

¬X

 . (4)

Yf (subscripts ‘f’/‘u’ stand for ‘failure’/‘unknown’) denotes a set of values for
output variables, with which some assignments for input variables can lead the
system to fail in the tdfa game.

Yf =
{
Y ∈ 2Y | ∃X ∈ 2X . ⟨ψ,X ∪ Y ⟩ ∈ to_fail

}
(5)

For some output values collected in Yu, the system retains the potential for win-
ning. It no longer needs to explore inputs values that are known to lead the
system winning, which are denoted by Xw(Y) (subscript ‘w’ stands for ‘win-
ning’). And the right part of Equation 4 addresses this scenario.

Yu =
{
Y ∈ 2Y | Y /∈ Yf and ∃X ∈ 2X . ⟨ψ,X ∪ Y ⟩ /∈ to_win

}
(6)

Xw(Y) =
{
X ∈ 2X | ⟨ψ,X ∪ Y ⟩ ∈ to_win

}
(7)

It checks the satisfiability of the current state ψ under the edge constraint
at Line 9. If ‘sat’ is returned, the solver would compute a satisfiable trace ρ
(Line 10). The first for-loop at Lines 12-18 generates each state in the run on ρ
by formula progression and checks whether the new states are winning, failure, or
forming a loop. Then in the second for-loop (Lines 19-24), it recursively checks
whether each state r[i] is winning or failure and add r[i] to winning or failure
respectively. Notably, the check order has to be reverse, i.e., from |r| − 1 to 0, as
MoGuS performs a Depth-First Search (DFS). At last, it recursively checks the
current state ψ (Line 25) and returns the results.

While giving the search direction, the satisfiability solver also helps prevent
the exploration of states that do not appear in any accepting run. The following
lemma indicates that these states are system failure states.

Lemma 4. Given a tdfa game over A, s is a system failure state if s is not in
any accepting run.

And then, ψ can be determined as a failure state when ψ ∧ edge_constraint
is unsatisfiable (Lines 31-32).

Lemma 5. When the Algorithm 1 reaches Line 9, state ψ is a failure state if
ψ ∧ edge_constraint is unsatisfiable, where edge_constraint is computed from
Equations 4-7.

Model-Guided Synthesis for LTL over Finite Traces 11

Algorithm 1: MoGuS: Model-Guided Synthesis
Input: LTLf formula φ with inputs X and outputs Y
Output: Realizable or Unrealizable

1 winning, failure, to_win, to_fail := ∅
2 return isWinning(φ, [φ]) ?Realizable :Unrealizable
3
4 Function isWinning(ψ, path)
5 peek := currentWinning(ψ, path)
6 if peek ̸= Unknown then
7 return peek =Winning

8 edge_constraint :=edgeConstraint(ψ)
9 if ltlfSat(ψ ∧ edge_constraint)=sat then

10 ρ := getModel()
11 Initialize r as an empty state sequence
12 for i from 0 to |ρ| − 2 do
13 s := fp(ψ, ρ[0 : i])
14 if s ∈ winning ∪ failure ∪ path then
15 break

16 else
17 r.pushBack(s)
18 path.pushBack(s)

19 for i from |r| − 1 to 0 do
20 if isWinning(r[i], path) then
21 winning := winning ∪ {r[i]}
22 else
23 failure := failure ∪ {r[i]}
24 path.popBack()

25 if isWinning(ψ, path) then
26 winning := winning ∪ {r[i]}
27 return true

28 else
29 failure := failure ∪ {r[i]}
30 return false

31 else
32 return false

Proof. At Line 9, ψ has not been determined as winning, which implies Yf∪Yu =
2Y . Therefore, there are two cases for Y ∈ 2Y :

– Y ∈ Yf . By Equation 5, there exists X ∈ 2X such that fp(ψ,X ∪ Y) is a
failure state or forming a loop.

– Y ∈ Yu. Here we consider X ∈ 2X such that X /∈ Xw(Y). By Equations 4,
it holds that X ∪ Y |= edge_constrain. Therefore, ψ ∧ edge_constraint is

12 S. Xiao et al.

Algorithm 2: Implementation of currentWinning
Input: A tdfa state ψ and a state sequence path storing the states visited

from the initial state to ψ.
Output: Winning, Failure, or Unknown

1 if isCurrentWinning(ψ) then
2 return Winning

3 if isCurrentFailure(ψ) then
4 return Failure

5 return Unknown
6
7 function isCurrentWinning(ψ)
8 if ψ ∈ winning then
9 return true

10 for each Y ∈ 2Y do
11 all_win :=true
12 for each X ∈ 2X do
13 if X ∪ Y ̸|= ψ and fp(ψ,X ∪ Y) ̸∈ winning then
14 all_win := false
15 break

16 else
17 to_win := to_win ∪ {⟨ψ,X ∪ Y ⟩}

18 if all_win then
19 return true

20 return false

21 function isCurrentFailure(ψ)
22 if ψ ∈ failure then
23 return failure

24 for each Y ∈ 2Y do
25 Let exist_fail :=false
26 for each X ∈ 2X do
27 if X ∪ Y ̸|= ψ and fp(ψ,X ∪ Y) ∈ failure ∪ path then
28 exist_fail :=true
29 to_fail := to_fail ∪ {⟨ψ,X ∪ Y ⟩}
30 break

31 if ¬exist_fail then
32 return false

33 return true

Model-Guided Synthesis for LTL over Finite Traces 13

unsatisfiable implying that fp(ψ,X∪Y) cannot appear in any accepting run.
By Lemma 4, fp(ψ,X ∪ Y) is a failure state.

Based on the above cases, ψ is a failure state by Definition 3. ⊓⊔

With Lemma 5 and Definition 3, we explicitly state this corollary in the
context of Algorithm 1 for better understanding.

Corollary 1. Given a tdfa state ψ,

– ψ is a winning state, if there exists Y ∈ 2Y such that for every X ∈ 2X ,
X ∪ Y |= ψ or fp(ψ,X ∪ Y) ∈ winning;

– ψ is a failure state, if either ψ∧edge_constrainr is unsatisfiable, or for every
Y ∈ 2Y there exists X ∈ 2X , X ∪Y ̸|= ψ and fp(ψ,X ∪Y) ∈ failure∪ path.

Theorem 4. Algorithm 1 is complete and sound. That is, given an LTLf for-
mula φ with inputs X and outputs Y,

– Algorithm 1 can terminate within time of O(2|X∪Y| · 22|cl(φ)|
);

– φ with ⟨X ,Y⟩ is realizable iff Algorithm 1 returns ‘Realizable’.

Proof. Completeness. The number of states related to recursive calls to isWinning
is bounded by the worst case doubly-exponential number of states in the con-
structed tdfa (Theorem 3). Before every newly computed state is checked re-
cursively, MoGuS first checks for winning, failure, and loop (Line 14). Then
edge_constraint helps enumerate the edges and successors of each state, which
guarantees that each state is visited at most 2|X∪Y| times. Hence, the time com-
plexity of Algorithm 1 is O(2|X∪Y| · 22|cl(φ)|

).
Soundness. (⇐) In Algorithm 1, there are two cases in which MoGuS re-

turns ‘Realizable’. The first one (Line 5) is when currentWinning(ψ, path) re-
turns ’Winning’, which implements exactly Definition 3. This indicates that φ
is already a winning state and according to Theorem 1, φ with ⟨X ,Y⟩ is realiz-
able. The second case is recursively calling isWinning (Line 25), which finally
falls into the base case, i.e., currentWinning(ψ, path) returns ’Winning’. This
situation has been discussed before.

(⇒) We perform this part of proof by contraposition. If Algorithm 1 returns
‘Unrealizable’, then φ with ⟨X ,Y⟩ is unrealizable. There are three cases leading
MoGuS to return ‘Unealizable’. The first and second cases (Lines 5, 25) are
analogous to those of (⇐). And the third case at Line 32 exactly corresponds to
the conclusion of Lemma 5. ⊓⊔

4.3 Back to Our Example

Figure 2 illustrates how MoGuS works in detail, based on the example described
in subsection 4.1. We now describe the main steps of Algorithm 1 when applied
to this example. At Line 5 of Algorithm 1, currentWinning finds a transition
⟨s0, a ∧ ¬b⟩, adds it to to_fail, and returns ‘Unknown’. Then edge_constraint
is assigned as b at Line 8. And ltlfSat computes a model of φ (Line 9), which

14 S. Xiao et al.

𝜓𝜓 = 𝑠𝑠0
𝑝𝑝𝑎𝑎𝑡𝑡𝑝 = {𝑠𝑠0}
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅
𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑡𝑡𝑡𝑡_𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓 = ∅

currentWinning
=Unknown

𝜓𝜓 = 𝑠𝑠0
𝑝𝑝𝑎𝑎𝑡𝑡𝑝 = {𝑠𝑠0}
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅
𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑡𝑡𝑡𝑡_𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓 =
{ 𝑠𝑠0,𝑎𝑎 ∧¬𝑏𝑏 }

𝑓𝑓𝑣𝑣𝑤𝑤𝑓𝑓_𝑐𝑐𝑡𝑡𝑤𝑤𝑠𝑠𝑡𝑡𝑓𝑓𝑎𝑎𝑤𝑤𝑤𝑤 = 𝑏𝑏

ltlfSat()=sat
𝜌𝜌 = 𝑎𝑎 ∧ 𝑏𝑏, 𝑎𝑎 ∧ 𝑏𝑏, 𝑎𝑎 ∧ 𝑏𝑏
𝑓𝑓 = 𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2

𝜓𝜓 = 𝑠𝑠2
𝑝𝑝𝑎𝑎𝑡𝑡𝑝 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2}
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅
𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑡𝑡𝑡𝑡_𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓 =
{ 𝑠𝑠0,𝑎𝑎 ∧¬𝑏𝑏 }

currentWinning
=Failure

𝜓𝜓 = 𝑠𝑠1
𝑝𝑝𝑎𝑎𝑡𝑡𝑝 = {𝑠𝑠0, 𝑠𝑠1}
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = {𝑠𝑠2}
𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑡𝑡𝑡𝑡_𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓 =
{ 𝑠𝑠0,𝑎𝑎 ∧¬𝑏𝑏 , 𝑠𝑠2, ¬𝑎𝑎 ∧ 𝑏𝑏 , ⟨𝑠𝑠2,𝑎𝑎 ∧
¬𝑏𝑏⟩}

𝜓𝜓 = 𝑠𝑠0
𝑝𝑝𝑎𝑎𝑡𝑡𝑝 = {𝑠𝑠0}
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 == {𝑠𝑠2, 𝑠𝑠1}
𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤 = ∅
𝑡𝑡𝑡𝑡_𝑓𝑓𝑎𝑎𝑤𝑤𝑓𝑓 =
{ 𝑠𝑠0,𝑎𝑎 ∧¬𝑏𝑏 , 𝑠𝑠2, ¬𝑎𝑎 ∧ 𝑏𝑏 }, ⟨𝑠𝑠2,𝑎𝑎 ∧
¬𝑏𝑏⟩, 𝑠𝑠1, 𝑎𝑎 ∧ 𝑏𝑏 , 𝑠𝑠1, 𝑎𝑎 ∧¬𝑏𝑏 }

currentWinning
=Failure

currentWinning
=failure

recursive call

roll back

roll back

return Unrealizable

Fig. 2: The main steps of MoGuS(φ, ⟨X ,Y⟩) when checking the realizability of
Equation (1) with X = {a} and Y = {b}, where we have φ = s0 = ◦F(◦a∧Gb),
s1 = F(◦a ∧ Gb) and s2 = (a ∧ Gb) ∨ (◦F(◦a ∧ Gb)).

in the figure returns ρ = {a ∧ b}, {a ∧ b}, {a ∧ b}. The corresponding run of ρ
is r = s0, s1, s2, of which states are checked whether winning, failure, or loop
and added to path at Lines 14-18. Next, MoGuS recursively checks whether the
new states in r (with a reverse order) can be winning (Line 20). As shown in
the figure, s2 turns out to be a failure state by currentWinning and is added
to failure, since for every Y ∈ 2Y there is a chance of forming a loop through
s2 (see Figure 1). Then, the algorithm rolls back state by state and sequentially
updates the failure states and transitions into failure and to_fail respectively.
The recursive process finally goes back to s0 and concludes that φ with ⟨X ,Y⟩
is unrealizable.

5 Experimental Evaluation

5.1 Experimental Set-up

Tools. We implemented MoGuS in a tool called MoGuSer using C++, and inte-
grated aaltaf [33] as the engine for LTLf satisfiability checking. We compared
the results with three state-of-the-art synthesis tools, Lisa [7], Lydia [21], and
Cynthia [29]. The first two tools are based on the bottom-up approach, and Cyn-
thia is SDD-based and performs forward synthesis. All three tools were run with
their default parameters.
Benchmarks. We ran the experiment with the collected benchmarks in [29],
which are in total 1454 instances, including 1400 Random instances, and 54
Two-player-Games instances. Based on our preliminary experimental results,
the majority of existing cases can be solved by the evaluated tools. To better
compare the scalability of different tools, we also created a new set of bench-
marks, which we call Ascending. We employed the randltl command in Spot [23]

Model-Guided Synthesis for LTL over Finite Traces 15

to generate a batch of random LTL formulas, which are treated as LTLf formu-
las (since LTLf formulas share the same syntax as LTL), and then randomly
divide the atomic variables from these formulas into input and output variables.
The --tree-size6 option of randltl specifies the tree size of the generated
formulas, and we generated 200 test cases for each size ranging from 100 to 900
(1800 in total). Although the Ascending benchmark consists of random formulas
as well, they have much larger sizes than those in [29] and are more suitable to
evaluate the tools’ scalability.
Platform. We ran the experiments on a CentOS 7.4 cluster, where each instance
had exclusive access to a processor core of the Intel Xeon 6230 CPU running
at 2.1 GHz, with 8 GB of memory and a 30-minute time limit. We measured
execution time with the Unix command time. When collecting the data, we
recorded a running time of 1801 seconds for all instances that could not be
solved by the tested tool within this time limit. We verified that the results
emitted by the four tools are consistent (excluding those that timed out).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

C
y
n

th
ia

 (
s
)

MoGuSer (s)

(a) MoGuSer vs. Cynthia.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

L
y
d
ia

 (
s
)

MoGuSer (s)

(b) MoGuSer vs. Lydia.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

L
is

a
 (

s
)

MoGuSer (s)

(c) MoGuSer vs. Lisa

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

T
o
ta

l
T

im
e
 (

s
)

Number of Solved Instances

MoGuSer
Cynthia

Lydia
Lisa

(d) Total number of solved instances.

Fig. 3: Comparison of different solvers’ performance on Random and Two-player-
Games benchmarks together. Points located on the red line represent instances
that fail to be solved within the given time and memory resources.

6 See https://spot.lre.epita.fr/man/randltl.1.html.

https://spot.lre.epita.fr/man/randltl.1.html

16 S. Xiao et al.

5.2 Results and Analysis I: Random and Two-player-Games
Benchmarks

We first evaluated the four tools on benchmarks collected from previous litera-
ture, i.e., Random and Two-player-Games benchmarks. The pairwise comparison
of MoGuSer against Cynthia, Lydia, and Lisa is shown in Figures 3a-3c, respec-
tively. Figure 3d illustrates the total number of successfully solved cases accu-
mulated over time. Tables 1 and 2 present quantitative summaries of results on
these benchmarks.

Comparing MoGuSer with the other top-down tool Cynthia, we can observe
that MoGuS has significantly improved the top-down solving capability for LTLf

synthesis problems. MoGuSer could solve many more instances than Cynthia, and
when both tools can solve an instance, MoGuSer demonstrates faster performance
(Figure 3a). As shown in Table 1, MoGuSer solved 918 unrealizable Random in-
stances, while Cynthia only solved 254. These facts indicate that the targeted
search strategy of MoGuS can avoid unnecessary searches (especially in unreal-
izable cases), resulting in faster convergence. Besides, MoGuSer achieves better
results on both Counter(s) instances than Cynthia, while Cynthia still keeps a
distinct advantage over other tools on the Nim test cases.

Table 1: Results on Random instances.

Tools Realizable Unrealizable Total
Solved Uniquely

solved
Solved Uniquely

solved
Solved Uniquely

solved
MoGuSer 347 0 918 6 1265 6
Cynthia 324 0 254 0 578 0
Lydia 350 0 932 0 1282 0
Lisa 351 0 960 11 1311 11

Table 2: Results on Two-player-Games instances.

Tools Single-counter Double-counters Nim
Solved Uniquely

solved
Solved Uniquely

solved
Solved Uniquely

solved
MoGuSer 8 0 6 1 8 0
Cynthia 4 0 2 0 21 4
Lydia 11 3 6 0 17 0
Lisa 8 0 7 0 13 1

As for the two bottom-up tools, Lydia and Lisa achieve similar performance
in most aspects and slightly outperform MoGuSer. The distribution pattern of

Model-Guided Synthesis for LTL over Finite Traces 17

points in Figure 3b closely resembles that in Figure 3c. We can observe that each
tool has its own merits in solving speed, MoGuSer performs almost the same as
Lydia/Lisa among instances that can be solved by both tools. From the endpoints
of the curves in Figure 3d, Tables 1 and 2, the number of instances solved by
MoGuSer is slightly lower than that of Lydia and Lisa. Thus we conclude that
the MoGuS has improved the top-down solving capability for LTLf synthesis
problems to a level nearly equivalent to that of bottom-up tools (Lydia and
Lisa).

Taking a comprehensive view of Tables 1 and 2, the bottom-up approach still
holds a slight advantage over the top-down approach. However, no LTLf syn-
thesis tool dominates all other tools, since each of them can uniquely solve some
instances. Similarly to hardware model checking [44], this emphasizes the need
for maintaining a portfolio consisting of diverse approaches for LTLf synthesis.

5.3 Results and Analysis II: Ascending Benchmarks

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

T
o
ta

l
T

im
e
 (

s
)

Number of Solved Instances

--tree-size 100
200
300
400
500
600
700
800
900

(a) MoGuSer.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

T
o
ta

l
T

im
e
 (

s
)

Number of Solved Instances

--tree-size 100
200
300
400
500
600
700
800
900

(b) Cynthia.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

T
o
ta

l
T

im
e
 (

s
)

Number of Solved Instances

--tree-size 100
200
300
400
500
600
700
800
900

(c) Lydia.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

T
o
ta

l
T

im
e
 (

s
)

Number of Solved Instances

--tree-size 100
200
300
400
500
600
700
800
900

(d) Lisa.

Fig. 4: The cumulative number of instances solved by each tool over time on the
Ascending benchmarks.

18 S. Xiao et al.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

S
o
lv

e
d

--tree-size

MoGuSer
Cynthia

Lydia
Lisa

Fig. 5: The number of solved instances as a function of the formula’s tree size.

We further evaluated the scalability of the four tools by a collection of test
cases sorted in ascending order based on the tree sizes of formulas. Figure 4
depicts the cumulative number of instances solved by each tool over time on
benchmarks of varying sizes. Meanwhile, Figure 5 illustrates the number of solved
instances as a function of the formula’s tree size.

Both MoGuSer and Cynthia demonstrate robust scalability, but MoGuSer per-
forms better than Cynthia. The endpoints of the curves in Figures 4a and 4b are
not clearly located by the tree sizes of the formulas, and the curves correspond-
ing to MoGuSer and Cynthia in Figure 5 fluctuate but are generally stable. These
suggest that the solving capabilities of MoGuSer and Cynthia are not significantly
limited by the problem size. Besides, MoGuSer solved more cases than Cynthia,
which reflects the efficiency of the top-down methodology by MoGuSer. Besides,
Cynthia achieves relatively satisfactory results on the Ascending benchmarks.
We infer that this can be attributed to the fact that realizable instances account
for a large portion of the Ascending benchmarks, since Cynthia’s ability to solve
realizable instances is comparable to the other three tools (see Table 1). Exclud-
ing 101 instances that cannot be solved by any tool, there are 1475 realizable
instances among the remaining 1699 instances.

On the other hand, the performance of the two tools (Lisa and Lydia) based
on the bottom-up method drops significantly as the LTLf formula size grows.
The curves in Figures 4c and 4d indicate that the solving speed of Lisa and
Lydia gradually slows down as the tree sizes of the formulas increase. From the
positions of the endpoints of the curves in Figures 4c, 4d and the trend of the
lower two curves in Figure 5, the number of instances successfully solved by
Lydia and Lisa also change significantly. When –tree-size is set to 100, Lydia
and Lisa solve 179 and 190 respectively, and when –tree-size increases to 900,
only 58 and 81 are solved respectively. We speculate that the reason is that both
Lydia and Lisa require the construction of complete dfa before synthesis, which
relies heavily on BDDs [10]. BDDs can require exponential space in the number
of variables, which limits the capability of synthesis tools.

Model-Guided Synthesis for LTL over Finite Traces 19

6 LTL synthesis – Related Work

We have discussed various works related to LTLf synthesis in the introduction.
Let us mention here some comments about related work. Temporal synthesis is
a classical problem, first proposed by A. Church in the 1960s [17]. The original
logic specification to be synthesized was expressed by an S1S formula, for which
the complexity to solve the problem is non-elementary [12,40]. The first work to
consider LTL synthesis is [39], which solves the synthesis problem by reducing
it to a Rabin game [25]. This approach constructs a non-deterministic Büchi au-
tomaton from the input LTL formula, and then determinizes it to its equivalent
Rabin automaton, a process which takes worst-case double-exponential time.
The complexity of solving a Rabin game is NP-Complete [25]. Nowadays, the
standard approach is to reduce LTL synthesis to the parity game [26], because
a parity game can be solved in quasi-polynomial time [13], even though the
doubly-exponential process to obtain a deterministic parity automaton cannot
be avoided. LTL synthesis tools like ltlsynt [37] and Strix [36], are built using the
parity-game approach. Because of the challenge to determinize an ω automa-
ton, researchers also consider other possibilities, e.g., by reducing LTL synthesis
to the bounded safety game [31]. Acacia+ [9] is a representative tool following
the safety-game approach. The annual reactive synthesis competition [1] drives
progress in this field, yet the scalability issue is still a major problem.

7 Concluding Remarks

We have presented a new approach called MoGuS for synthesizing LTLf for-
mulas. By invoking an LTLf satisfiability checker, MoGuS performs the search
for a winning strategy in a more targeted way compared to previous top-down
approaches. An empirical comparison of this method to state-of-the-art LTLf

synthesizers suggests that it can achieve the best overall performance. Several
future works are being considered. Firstly, MoGuS relies heavily on an LTLf sat-
isfiability checker, and hence it can benefit from performance improvements of
this stage. We can explore incrementally invoking the LTLf satisfiability checker.
Secondly, both the bottom-up tools Lydia and Lisa integrated with composition
techniques [7,21,6], which decomposes the formula on conjunctions, perform syn-
thesis of each conjunct, and then combine the results in order to solve the original
problem. Similar composition ideas could also be applied to top-down synthesis
approaches. Finally, it is interesting to check whether the optimizations described
in this article can accelerate LTL synthesis of safety properties [32,47].

Acknowledgements This work is supported by National Natural Science Foun-
dation of China (Grant #U21B2015 and #62372178), “Digital Silk Road” Shang-
hai International Joint Lab of Trustworthy Intelligent Software under Grant
22510750100, Shanghai Collaborative Innovation Center of Trusted Industry
Internet Software, by US NSF grants IIS-1527668, CCF-1704883, IIS-1830549,
CNS-2016656, and by US DoD MURI grant N00014-20-1-2787.

20 S. Xiao et al.

Data-Availability Statement To support the experimental results, the source
code of MoGuSer and benchmarks is available at https://drive.google.com/file/
d/1ohOa4Kl4R4br095k-kVJcWV87U5XON5q/view?usp=sharing.

References

1. The reactive synthesis competition. http://www.syntcomp.org/
2. Althoff, C., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi

automata. In: Proc. 10th Int. Conf. on the Implementation and Application of
Automata. Lecture Notes in Computer Science, vol. 3845, pp. 262–272. Springer
(2005)

3. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Synthesis under assumptions.
In: Sixteenth International Conference on Principles of Knowledge Representation
and Reasoning. pp. 615–616. AAAI Press (2018)

4. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL environ-
ment specifications. In: Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling. pp. 31–39. AAAI Press (2019)

5. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Math-
ematics and Artificial Intelligence 22, 5–27 (1998)

6. Bansal, S., Giacomo, G.D., Stasio, A.D., Li, Y., Vardi, M.Y., Zhu, S.: Composi-
tional safety LTL synthesis. In: Verified Software: Theories, Tools, and Experiments
(VSTTE) (2022)

7. Bansal, S., Li, Y., Tabajara, L., Vardi, M.: Hybrid compositional reasoning for
reactive synthesis from finite-horizon specifications. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence. vol. 34, pp. 9766–9774. AAAI Press (2020)

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012),
in Commemoration of Amir Pnueli

9. Bohy, A., Filiot, E., Jin, N.: Acacia+, a tool for LTL synthesis. In: of Lecture Notes
in Computer Science. pp. 652–657. Springer-Verlag (2012)

10. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE
Transactions on Computing C-35(8), 677–691 (1986)

11. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Int.
Congress on Logic, Method, and Philosophy of Science. 1960. pp. 1–12. Stanford
University Press (1962)

12. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. AMS 138, 295–311 (1969)

13. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing. p. 252–263. STOC 2017, Association for Com-
puting Machinery, New York, NY, USA (2017)

14. Camacho, A., Bienvenu, M., McIlraith, S.A.: Finite LTL synthesis with environ-
ment assumptions and quality measures. In: Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning. pp. 454–463. AAAI Press
(2018)

15. Camacho, A., McIlraith, S.A.: Strong fully observable non-deterministic planning
with LTL and LTLf goals. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. pp. 5523–5531 (2019)

https://drive.google.com/file/d/1ohOa4Kl4R4br095k-kVJcWV87U5XON5q/view?usp=sharing
https://drive.google.com/file/d/1ohOa4Kl4R4br095k-kVJcWV87U5XON5q/view?usp=sharing
http://www.syntcomp.org/

Model-Guided Synthesis for LTL over Finite Traces 21

16. Camacho, A., Triantafillou, E., Muise, C.J., Baier, J.A., McIlraith, S.A.: Non-
deterministic planning with temporally extended goals: LTL over finite and in-
finite traces. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence. pp. 3716–3724. AAAI Press (2017)

17. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathe-
maticians, 1962. pp. 23–35. Institut Mittag-Leffler (1963)

18. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Journal of Symbolic Logic 28(4), 289–290 (1963)

19. Darwiche, A.: Sdd: A new canonical representation of propositional knowledge
bases. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence. p. 819–826. AAAI Press (2011)

20. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence. pp. 854–860. AAAI Press (2013)

21. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf/LDLf
into deterministic finite automata. In: Proceedings of the International Conference
on Automated Planning and Scheduling. vol. 31, pp. 122–130 (2021)

22. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of fond planning for
LTLf and LDLf goals. In: Proceedings of the 27th International Joint Conference
on Artificial Intelligence. p. 4729–4735. AAAI Press (2018)

23. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: What’s new? In: Proceedings of the 34th International
Conference on Computer Aided Verification (CAV’22). Lecture Notes in Computer
Science, vol. 13372, pp. 174–187. Springer (Aug 2022). https://doi.org/10.1007/
978-3-031-13188-2_9

24. Eén, N., Sörensson, N.: An extensible SAT-solver. In: International conference on
theory and applications of satisfiability testing. pp. 502–518. Springer (2003)

25. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs.
In: Proc. 29th IEEE Symp. on Foundations of Computer Science. pp. 328–337
(1988)

26. Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In: Proc. 32nd
IEEE Symp. on Foundations of Computer Science. pp. 368–377 (1991)

27. Fuggitti, F.: FOND planning for LTLf and PLTLf goals (2020). https://doi.org/
10.48550/ARXIV.2004.07027

28. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Proceedings of the 24th International Conference on Artificial Intelligence. pp.
1558–1564. AAAI Press (2015)

29. Giacomo, G.D., Favorito, M., Li, J., Vardi, M.Y., Xiao, S., Zhu, S.: LTLf synthesis
as and-or graph search: Knowledge compilation at work. In: Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence. pp. 3292–
3298. AAAI Press (2022)

30. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sand-
holm, A.: Mona: Monadic second-order logic in practice. In: Proc. 1st Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, vol. 1019, pp. 89–110. Springer (1995)

31. Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in
Computer Science. pp. 243–254 (2006)

32. Kupferman, O., Vardi, M.: Model checking of safety properties. In: Proc. 11th
Int. Conf. on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 1633, pp. 172–183. Springer (1999)

https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.48550/ARXIV.2004.07027
https://doi.org/10.48550/ARXIV.2004.07027
https://doi.org/10.48550/ARXIV.2004.07027
https://doi.org/10.48550/ARXIV.2004.07027

22 S. Xiao et al.

33. Li, J., Rozier, K.Y., Pu, G., Zhang, Y., Vardi, M.Y.: SAT-based explicit LTLf satis-
fiability checking. In: The Thirty-Third AAAI Conference on Artificial Intelligence.
pp. 2946–2953. AAAI Press (2019)

34. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTLf satisfibility checking. In:
Proceedings of the Twenty-First European Conference on Artificial Intelligence. p.
513–518. IOS Press (2014)

35. Luo, W., Wan, H., Du, J., Li, X., Fu, Y., Ye, R., Zhang, D.: Teaching LTLf satisfia-
bility checking to neural network. In: Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence. pp. 3292–3298. AAAI Press (2022)

36. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp.
578–586. Springer (2018)

37. Michaud, T., Colange, M.: Reactive synthesis from LTL specification with spot.
In: Proceedings Seventh Workshop on Synthesis, SYNT@CAV 2018. Electronic
Proceedings in Theoretical Computer Science, vol. xx, p. xx (2018)

38. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science. pp. 46–57. IEEE (1977). https://doi.org/10.1109/
SFCS.1977.32

39. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Proceedings of the 16th International Colloquium on Automata, Languages and
Programming. p. 652–671. ICALP ’89, Springer-Verlag, Berlin, Heidelberg (1989)

40. Rabin, M.: Automata on infinite objects and Church’s problem. Amer. Mathemat-
ical Society (1972)

41. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foun-
dations of Computer Science. pp. 319–327 (1988)

42. Shi, Y., Xiao, S., Li, J., Guo, J., Pu, G.: SAT-based automata construction for LTL
over finite traces. In: 27th Asia-Pacific Software Engineering Conference (APSEC).
pp. 1–10. IEEE (2020). https://doi.org/10.1109/APSEC51365.2020.00008

43. Xiao, S., Li, J., Zhu, S., Shi, Y., Pu, G., Vardi, M.Y.: On the fly synthesis for LTL
over finite traces. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence.
pp. 6530–6537. AAAI Press (2021)

44. Zhang, X., Xiao, S., Xia, Y., Li, J., Chen, M., Pu, G.: Accelerate safety model
checking based on complementary approximate reachability. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 42(9), 3105–3117
(2023). https://doi.org/10.1109/TCAD.2023.3236272

45. Zhu, S., Tabajara, L., Li, J., Pu, G., Vardi, M.: Symbolic LTLf synthesis. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
pp. 1362–1369. AAAI Press (2017)

46. Zhu, S., Giacomo, G.D., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and
stability assumptions. In: The Thirty-Fourth AAAI Conference on Artificial Intel-
ligence. pp. 3088–3095. AAAI Press (2020)

47. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety
LTL synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) Hardware and Software:
Verification and Testing. pp. 147–162. Springer International Publishing, Cham
(2017)

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/APSEC51365.2020.00008
https://doi.org/10.1109/APSEC51365.2020.00008
https://doi.org/10.1109/TCAD.2023.3236272
https://doi.org/10.1109/TCAD.2023.3236272

	Model-Guided Synthesis for LTL over Finite Traces

