
1

Accelerate Safety Model Checking Based on Complementary
Approximate Reachability

Xiaoyu Zhang, Shengping Xiao, Yechuan Xia, Jianwen Li, Mingsong Chen, and Geguang Pu

Abstract—Model checking is an automatic formal verification
method that is widely applied to hardware verification. Safety
properties are the mainly verified properties in practice that
can be falsified within finite steps if they do not hold for
systems. However, state-of-the-art safety model checking algo-
rithms cannot meet the performance requirement driven by the
industry as the sizes of (hardware) systems to be verified increase
rapidly. Therefore, more efficient techniques are still eagerly
in demand. Recently, a new safety model checking technique
Complementary Approximate Reachability (CAR) was presented
and received considerable concerns from the community. CAR
has shown its advantages in unsafe checking (bug finding), but
cannot be as competitive as other state-of-the-art techniques,
e.g., IC3/PDR, on safe checking (proving correctness). In this
paper, we propose four kinds of heuristics, two inspired by
IC3/PDR and another two dedicated to CAR, to improve the
performance of CAR. We integrate the heuristics into the open-
source model checker SimpleCAR and compare the performance
to the original CAR and IC3/PDR on 748 instances from the
hardware model-checking competitions. Our results show that
by fixing the time and memory resources, CAR can solve 124
more instances with the four proposed heuristics, i.e., 53.4%
more instances can be solved comparing to the original CAR.
Furthermore, CAR in both forward and backward directions
can solve 10 more instances than IC3/PDR in corresponding
directions, and uniquely solve 44 more instances that IC3/PDR
in corresponding directions cannot solve, which increases the
capability of the current model-checking portfolio.

I. INTRODUCTION

Formal verification techniques, such as model checking, are
becoming more and more attractive to the hardware design
community [1], [2]. As a complement to the traditional simu-
lation technique, model checking can not only detect additional
bugs but also prove the correctness of the hardware system.
Given a model M and a property P , model checking searches
all possible behaviors of M to check whether P holds for M .
Once a system behavior is detected to violate the property P ,
the model checker returns a counterexample as an evidence,
which demonstrates the execution of the system leading to the
property violation. Such a process is called bug finding. We
focus on the topic of safety model checking, in which P is a
safety property such that the violation of the property can be
detected within finite steps. It is well known that the safety
model checking problem can be reduced to that of reachability
analysis [3].
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State-of-the-art safety model checking techniques include
Bounded Model Checking (BMC) [4], [5], Interpolation
Model Checking (IMC) [6], Property Directed Reachability
(IC3/PDR) [7], [8], and Complementary Approximate Reach-
ability (CAR) [9], all of which integrate the Boolean Satis-
fiability (SAT) technique to boost the performance. Notably,
there is so far no such algorithm that can dominate others,
though from the experience BMC is good at unsafe checking
(bug finding), IMC and IC3/PDR are better for safe checking
(correctness proof), and CAR complements both BMC on bug
finding and IMC/IC3/PDR on proving correctness by solving
a considerable number of industrial instances that cannot be
solved by others within a given time and hardware resources
[9], [10]. Therefore, a portfolio consisting of different tech-
niques is maintained for different verification tasks.

However, based on the discussion with our industrial part-
ners, the aforementioned model checking techniques still can-
not meet the performance requirement when verifying large
designs. That is, the sizes of models are too large to be
checked by extant techniques within the considerable time and
memory resources. An alternative to ease the urgent verifi-
cation overhead is to use some divide-and-conquer strategies
like assume-guarantee [11], which decompose the large model
into small ones that can be verified by state-of-the-art model
checkers, and proving the correctness of such small parts
can induce the correctness of the original model. Yet, even
the models from decomposition are becoming difficult to be
verified, considering the current techniques’ performance. As
a result, there is still a dearth of more efficient model checking
techniques for verifying large hardware designs.

Complementary Approximate Reachability (CAR) is a new
technique of SAT-based model checking, inspired by the tradi-
tional reachability analysis [9]. Analogous to the reachability
analysis, CAR can be performed in both forward and backward
directions, which are named Forward and Backward CAR
respectively. CAR maintains an over-approximate abstract
state-sets sequence (i.e., the O-sequence) for safe checking,
and an under-approximate explicit state-sets sequence (i.e., the
U -sequence) for unsafe checking. Generally speaking, CAR
frequently invokes SAT calls, from which the satisfiable result,
namely the assignment, is used to update the U -sequence while
the unsatisfiable result, namely the Unsatisfiable Core (UC),
is used to refine the O-sequence. CAR has shown superiority
on unsafe checking to IC3/PDR [10], [12], but still cannot
perform as well as IC3/PDR [9] on safe checking.

From our understanding, the performance difference be-
tween the two techniques is caused by the different purposes
they were designated to. On one hand, IC3/PDR focuses on
proving correctness, so it costs a lot of effort to compute the
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so-called minimal inductive cores (MIC), from which the proof
certificate is shown to be conducted more efficiently. However,
the drawback of bug-finding performance may have to be paid
for. On the other hand, CAR operates more like a search
algorithm, which tries to detect a counterexample as soon as
possible. During the process, the collected constraints are used
mainly for the guidance of state search. As a result, CAR has
a flexible framework to use different search strategies to find
bugs, while it may lose performance when proving correctness.

This paper proposes four kinds of different heuristics to
enhance CAR’s performance in proving correctness. The first
two are inspired by IC3/PDR, namely UC-propagation and
Partial-state generation. The idea of UC-propagation is to
propagate the elements in Oi to Oi+1 such that the proof
certificate can be located more quickly. The Partial-state
generation aims to extract a set of states from a single one such
that more states can be added into the U -sequence to accelerate
the checking. Compared to that implemented in IC3/PDR, we
propose more aggressive strategies for these two heuristics that
additionally make use of the state information in the O- and
U -sequences. The other two heuristics are achieved by MUC-
extraction and Dead-state detection, which are specific in CAR
and not used in IC3/PDR. MUC-extraction is presented to
compute the Minimal Unsatisfiable Core (MUC) instead of
the Unsatisfiable Core (UC) to refine the O-sequence, which
can be more efficient. A dead state is a state which does not
have any predecessors. The Dead-state detection heuristic is
to detect such dead states and block them forever to prune the
state space significantly.

To evaluate the efficiency of these proposed heuristics,
an extensive evaluation on a 748-instances benchmark from
the hardware model checking competition (HWMCC) 2015
[13] and 2017 [14] was performed in our experiments. By
fixing the time and memory resources, CAR can solve 124
more instances with the four proposed heuristics, i.e., 53.4%
more instances can be solved comparing to the original CAR.
Furthermore, CAR in both directions (forward and backward)
can solve 10 more instances than IC3/PDR in both directions,
and uniquely solves 44 more instances that IC3/PDR in
corresponding directions cannot solve, which increases the
ability of the current model-checking portfolio.

Notably, by integrating the four heuristics, neither single
direction of CAR is able to perform better than the default
(Forward) IC3/PDR: This indicates that computing MIC is
still a better generalization technique than simply computing
MUC ones. However, our experiments show that the two
directions of CAR can complement each other in a better way
than that of IC3/PDR. Therefore, the shortcoming of CAR in
proving correctness can be made up by conducting a portfolio
including both directions of CAR, without losing its advantage
on bug-finding.

In summary, the contributions of this paper are as follows:
• We propose four different heuristics to enhance the per-

formance of CAR, making CAR a state-of-the-art model
checking technique as competitive as IC3/PDR.

• We conduct an extensive experimental evaluation to show
the efficiency of our proposed heuristics. We show that
even though Forward/Backward CAR cannot outperform

the mainstream Forward IC3/PDR, combining both di-
rections together enables CAR to outperform IC3/PDR,
which provides a (potential) new direction to improve
state-of-the-art model-checking techniques.

We continue in the next section with related work. Section
III introduces the preliminaries. Section IV demonstrates a
motivating example. Section V presents our approaches includ-
ing the heuristics. Section VI shows the experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK

In early stages, model checking can be performed explicitly
by calculating fixpoints on the Kripke structure with CTL
properties [15] or by searching states on the product automaton
constructed from both the input model and LTL property [16].
Although such explicit techniques are straightforward and easy
to understand, they have very poor capability to check large
systems and are now replaced by symbolic ones that rely
on BDD [17], and more efficiently, SAT [18] solvers as the
computation core. In fact, the SAT-based model checking
is considered as the most promising automatic verification
technique for practical purposes [19].

State-of-the-art SAT-based model checking techniques in-
clude BMC [4], [5], IMC [6], IC3/PDR [7], [8], [20] and
CAR [9], [12], [10]. BMC is the first approach to reduce model
checking to SAT in which every SAT query with a k-unrolling
system-input answers whether there is a counterexample with
length k. BMC is good at finding bugs (counterexamples), yet
it does not handle correctness proofs well [21], [22]. IMC is
based on BMC and accomplishes an efficient correctness proof
by maintaining an over-approximate states sequence whose
elements are refined by the interpolants from unsatisfiable SAT
queries, see [6]. However, both BMC and IMC may involve
the scalability problem on SAT solving, as the size of SAT
formula blows up rapidly.

Compared to BMC and IMC, IC3/PDR is able to perform
model checking by unrolling the system at most once, thus
can significantly ease the heavy computation of a single
SAT query (though a much larger number of queries can
be invoked than BMC/IMC). Moreover, IC3/PDR computes
the so-called minimal inductive cores (MIC) to refine the
maintained over-approximate sequence such that the proof
can converge more efficiently. Notably, IC3/PDR requires the
over-approximate sequence to be incremental. From previous
evaluation, IC3/PDR has a clear advantage in proving cor-
rectness. Subsequently, several extensions on IC3/PDR, e.g.,
AVY/KAVY [23], [24], QUIP [25] and IC3-INN [26], are
proposed but can only enhance the performance on certain
benchmarks. Also, the efforts to combine abstractions together
with IC3/PDR are investigated, e.g., [27], [28].

Recently, a new model checking algorithm CAR was pro-
posed and received concerns from the community. Com-
pared to IC3/PDR, CAR maintains both the over- and under-
approximate sequences, which are used to prove correctness
and to find bugs, respectively. Moreover, the over-approximate
sequence in CAR are not required to be incremental, as it
follows the traditional way used in reachability analysis to
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converge the proof. Therefore, CAR provides a more flexible
framework and different heuristics can be integrated more
easily. For example, the intersection and rotation strategies
have been integrated into CAR and successfully improve the
performance [12]. From previous results, CAR is good at bug
finding but cannot perform as well as IC3/PDR on proving
correctness.

In this paper, we propose four different heuristics based
on CAR, which are either IC3/PDR-related or CAR-specific.
We explore an efficient way to combine IC3/PDR and CAR
together such that the new approach can inherit the advantages
from both sides. That is, we leverage the light-weight heuris-
tics from IC3/PDR (excluding the heavy-weight induction) and
flexible features from CAR so as to conduct a better model-
checking algorithm than both single ones.

III. PRELIMINARIES

A. Boolean Transition System

A Boolean transition system Sys is a tuple (V, I, T ), where
V and V ′ denote the set of variables in the present state
and the next state, respectively. The state space of Sys is the
set of possible variable assignments. I is a Boolean formula
corresponding to the set of initial states, and T is a Boolean
formula over V ∪ V ′, representing the transition relation.
State s2 is a successor of state s1 iff s1 ∧ s′2 |= T, which
is also denoted by (s1, s2) ∈ T . A path of length k is
a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈ T
holds for (1 ≤ i ≤ k − 1). A state t is reachable from s
in k steps if there is a path of length k from s to t. Let
X ⊆ 2V be a set of states in Sys. We denote the set of
successors of states in X as R(X) = {t | (s, t) ∈ T, s ∈ X}.
Conversely, we define the set of predecessors of states in X
as R−1(X) = {s | (s, t) ∈ T, t ∈ X}. Recursively, we define
R0(X) = X and Ri(X) = R(Ri−1(X)) where i ≥ 0, and
the notation R−i(X) is defined analogously. In short, Ri(X)
denotes the states that are reachable from X in i steps, and
R−i(X) denotes the states that can reach X in i steps.

B. Safety Checking and Reachability Analysis

Given a transition system Sys = (V, I, T ) and a safety
property P , which is a Boolean formula over V , a model
checker either proves that P holds for any state reachable
from an initial state in I , or disproves P by producing a
counterexample. In the former case, we say that the system
is safe, while in the latter case it is unsafe. A counterexample
is a finite path from an initial state s to a state t violating
P , i.e., t ∈ ¬P , and such a state is called a bad state.
In symbolic model checking, safety checking is reduced to
symbolic reachability analysis. Reachability analysis can be
performed in forward or backward search. Forward search
starts from initial states I and searches for reachable states of I
by computing Ri(X) with increasing values of i, while back-
ward search begins with states in ¬P and computes R−i(X)
with increasing values of i to search for states reaching ¬P .
Table I gives the corresponding formal definitions.

For forward search, Fi denotes the set of states that are
reachable from I within i steps, which is computed by

TABLE I
STANDARD REACHABILITY ANALYSIS.

Forward Backward

Base F0 = I B0 = ¬P
Induction Fi+1 = R(Fi) Bi+1 = R−1(Bi)

Safe Check Fi+1 ⊆
⋃

0≤j≤i Fj Bi+1 ⊆
⋃

0≤j≤i Bj

Unsafe Check Fi ∩ ¬P 6= ∅ Bi ∩ I 6= ∅

iteratively applying R. At each iteration, we first compute a
new Fi, and then perform safe checking and unsafe checking.
If the safe/unsafe checking hits, the search process terminates.
Intuitively, unsafe checking Fi ∩ ¬P 6= ∅ indicates some bad
states are within Fi and safe checking Fi+1 ⊆

⋃
0≤j≤i Fj

indicates that all reachable states from I has been checked
and none of them violate P . For backward search, the set Bi

is the set of states that can reach ¬P in i steps, and the search
procedure is analogous to the forward one.

C. SAT Solving and Unsatisfiable Core

Our setting is standard propositional logic. A literal is
an atomic variable or its negation. A cube (resp. clause) is
a conjunction (resp. disjunction) of literals. Apparently, the
negation of a clause is a cube and vice versa. A formula in
Conjunctive Normal Form (CNF) is a conjunction of clauses.
For simplicity, we also treat a CNF formula φ as a set of
clauses and make no difference between the formula and set
forms of φ. Similarly, a cube or a clause c can be treated as a
set of literals or a Boolean formula, depending on the context.

We say a CNF formula φ is satisfiable if there exists an
assignment of each Boolean variable in φ such that φ is
true; otherwise, φ is unsatisfiable if there is no assignment
that makes φ true. Commonly, we invoke the SAT solver,
e.g., MiniSat [29], [30], to decide whether a CNF formula
φ is satisfiable or not. If φ is satisfiable, an assignment of
variables, called a model of φ, can be returned by the SAT
solver. Otherwise, an unsatisfiable subset of clauses in φ, i.e.,
C ⊆ φ, called the unsatisfiable core (UC) of φ, is returned as
the reason why φ is unsatisfiable.

A minimal unsatisfiable core (MUC) of formula φ is a non-
reducible UC of φ, i.e., removing any elements of the MUC
makes the remaining part satisfiable [31]. Formally, for all
C, C ( MUC implies C is satisfiable. Given a UC, the
trivial way to extract a MUC from it is to remove clauses
of the UC one by one, and then invoke the SAT solver to
check whether the left clauses are still unsatisfiable. If this is
the case, the dropping clause is not in the MUC and can be
removed permanently. Otherwise, the dropping clause is in the
MUC. Finally, the remaining part of the UC, which consists
of only non-reducible clauses, is the MUC that we want [31].

For an unsatisfiable formula φ, we only focus on a part of φ
and consider the rest unimportant. We call the unimportant part
remainder of φ. Under this premise, we define the term high-
level UC and high-level MUC. Given an unsatisfiable formula
φ = A∧R, where A is the important part of the formula and
R is the remainder, we say that C is a high-level UC of φ, if
C ⊆ A and C ∧R is also unsatisfiable. Analogously, we say
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that M is a high-level MUC of φ if M is a high-level UC and
removing any elements from it makes its conjunction with the
remainder satisfiable [32], i.e., M ⊆ A, M = C1∧C2∧...∧Ck,
M ∧R is unsatisfiable, but (M\Ci) ∧R becomes satisfiable
for each 1 ≤ i ≤ k. In this paper, we consider the SAT queries
with the form SAT(R,A), where R is a CNF formula and A
is a cube. For the SAT solving, we focus on assumption A
by considering R as the remainder. We intend to extract the
high-level UC or MUC from assumptions, i.e., C ⊆ A.

D. Complementary Approximate Reachability

1) Theory of CAR: In standard forward search, each Fi, as
described in Section III-A, is a set of states reachable from
I within i steps. To obtain states in Fi+1, previous symbolic
model checking approaches invoke SAT solver to solve the
formula φ = Fi(x) ∧ T (x, x′), and then obtain all states in
Fi+1 from φ by projecting to the prime part of the model.
In this way, the set of reachable states is computed and a
sequence of accurate reachable state sets is maintained, which
enables both safe and unsafe checking. Whereas Forward CAR
maintains two sequences of reachable states sets: an over-
approximate states sets sequence (O0, O1, . . . ), which contains
supersets of reachable states from initial states I , and an under-
approximate states sets sequence (U0, U1, . . . ), which contains
subsets of reachable states to bad states ¬P . Due to the
over-approximation, the O-sequence is only able to perform
safe checking, and the U -sequence is used to perform unsafe
checking. The formal definitions of these two sequences are
shown in Table II.

TABLE II
OVER/UNDER-APPROXIMATE STATE SEQUENCE.

O-sequence U -sequence

Base O0 = I U0 = ¬P
Induction Oj+1 ⊇ R(Oj)(j ≥ 0) Uj+1 ⊆ R−1(Uj)(j ≥ 0)

Constraint Oj ⊆ P (0 ≤ j) –

We call each Oi (i ≥ 0) a frame. We also define the
notation S(O) =

⋃
0≤j≤nOj , which is the set of all states

in the O-sequence (suppose the O-sequence is of size n),
and S(U) =

⋃
0≤j≤m Uj denotes the set of states in the U-

sequence (suppose m is the length of the U-sequence). As
we have mentioned above, each Oi+1 is an over-approximate
states set reachable from Oi in one step, and we make no
difference between the following representation of Oi: a set
of states, a set of clauses, or a Boolean formula in CNF.
Analogously, each Ui+1 is an under-approximate states set
reachable to Ui in one step, and we make no difference
between the following representation of Ui: a set of states,
a set of cubes, or a Boolean formula in DNF. Moreover, the
length of these two sequences is not required to be the same.
The following theorems w.r.t. the O- and U-sequences are used
to guarantee the correctness of safe and unsafe checking in
CAR.

Theorem 3.1 (Safe Checking): Given a system Sys and a
safety property P , Sys is safe for P iff there exists an O-

sequence (O0, O1, . . . , Oi, Oi+1) with i ≥ 0 such that Oi+1 ⊆⋃
0≤j≤iOj .
Theorem 3.2 (Unsafe Checking): Given a system Sys and

a safety property P , Sys is unsafe for P iff there exists a
U -sequence (U0, U1, . . . , Ui) with i ≥ 0 such that I ∩Ui 6= ∅.

In addition, Theorem 3.3 below reveals a direction to
refine the O-sequence and update the U -sequence, which
tries to make the states in these two sequences unreachable.
Refinement details are shown in Theorem 3.4.

Theorem 3.3 (Sequences Refinement): Given a system Sys
and a safety property P , Sys is safe for P iff there exists
an O-sequence, such that for every U -sequence S(O) ∩
R−1(S(U)) = ∅ holds.

Theorem 3.4: Given an O-sequence (O0, O1, . . . ), a U -
sequence (U0, U1, . . .), a cube c1 ∈ Uj(j ≥ 0) and the formula
φ = Oi(x) ∧ T (x, x′) ∧ c1′(x′)(i ≥ 0):

(1) If φ is satisfiable, there is a cube c2 such that every state
t ∈ c2 is a predecessor of some state s in c1 and t ∈ Oi.
By updating Uj+1 = Uj+1 ∪ {c2}, the sequence is still
a U -sequence;

(2) If φ is unsatisfiable, {c1}∩R(Oi) = ∅. Moreover, there
is a cube c2 such that c1 ⇒ c2 and {c2} ∩ R(Oi) = ∅.
By updating Oi+1 = Oi+1∪{¬c2}, the sequence is still
an O-sequence.

In the theorem above, the first item suggests to add a set of
states rather than a single one to the U -sequence. Analogously,
the second item suggests to refine the O-sequence by blocking
a set of states rather than a single one. These goals can be
achieved by utilizing the UC returned from the SAT solver. In
both situations, it will speed up the computation. Similarly to
the standard reachability analysis, Backward CAR performs
the same framework on Sys−1 = (V,¬P, T−1) with respect
to ¬I .

2) Algorithm of CAR: Then we describe the framework of
CAR, in which we integrate the proposed four heuristics. The
main part of CAR Algorithm is described between Line 1
and 8 of Algorithm 1. The lines in red are the heuristics we
propose and do not belong to the original CAR algorithm. The
main part takes Sys = (V, I, T ) and a safety property P as
inputs, and returns safe if Sys satisfies P or unsafe with an
counterexample if not.

The main procedure first checks whether the initial states
intersect with the bad states (Line 1). Then the O- and U-
sequences are initialized (Line 2). In the main loop (Line 3-
8), CAR performs unsafe and safe checking iteratively. For
unsafe checking (Line 4-5), CAR picks a state s from the
U-sequence and invokes the UNSAFECHECK procedure to
check if s is reachable from the initial states. The PICKSTATE
function enumerates states in the U-sequence (Line 4). For
safe checking, the SAFECHECK procedure checks if the O-
sequence has included all states that are reachable from the
initial states (Line 7).

The UNSAFECHECK procedure (Line 10-22) takes as inputs
a state s in the U-sequence and the current frame level i of the
O-sequence. The UNSAFECHECK procedure checks whether
s is reachable from the states in Oi by making the SAT query
SAT (Oi ∧ T, s′) (Line 11). If the result is true, the returned
assignment t (Line 13) is a state which can reach s, i.e.,
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Algorithm 1 Implementation of Forward CAR
1: if SAT(I,¬P ) then return unsafe
2: O0 := I, U0 := ¬P, k := 0, Deads := ∅
3: while true do
4: while (Cube s := PICKSTATE(U)) 6= ∅ do
5: if UNSAFECHECK(s, k) then return unsafe;
6: if PROPAGATION(k) then return safe
7: if SAFECHECK(k) then return safe
8: k := k + 1

9:
10: procedure UNSAFECHECK(s, i)
11: while SAT(Oi ∧ T, s′) do
12: if i = 0 then return true
13: Cube t := GETASSIGNMENT()
14: Cube Inputt := GETINPUT()
15: t := GETPARTIAL(t, Inputt, s) . optional
16: Uj+1 := Uj+1 ∪ t supposing s is in Uj(j ≥ 0)
17: if UNSAFECHECK(t̂, i− 1) then return true
18: Cube c := GETUNSATCORE()
19: Cube ĉ := EXTRACTMUC(c′, Oi ∧ T )
20: Oi+1 := Oi+1 ∩ ¬ĉ
21: BLOCKDEAD(s)
22: return false
23:
24: procedure SAFECHECK(k)
25: i := 0
26: while i < k do
27: if not SAT(Oi+1 ∧ ¬(

∨
0≤j≤iOj)) then

28: return true
29: return false

SAT (t ∧ T, s′) is satisfiable. If i = 0, then s is reachable
from the initial states in O0 (Line 12), which indicates a
counterexample is detected. Otherwise, we add t to Uj+1

according to Theorem 3.4, supposing that s is in Uj , then
we recursively check whether t is reachable from states in
Oi−1 (Line 17). If the SAT query returns false, we get an
unsatisfiable core c ⊆ s from the SAT solver (Line 18) and add
¬c to Oi+1 according to Theorem 3.4. Note that c is an over-
approximation of states that contains s and is not reachable
from Oi, so we add ¬c to Oi+1 to block states in c. Intuitively,
the shorter c is, the more states c represents, and the more
states ¬c can block at Oi+1.

The SAFECHECK procedure at Line 24-29 takes as input the
maximal frame level k of the O-sequence. At Line 27, CAR
checks whether Oi+1 is contained in the union of frames in the
O-sequence whose indexes range from 0 to i (including 0 and
i). If this is the case, all states reachable from the initial states
are already included in O-sequence, leading to the conclusion
that the system is safe w.r.t the safety property P .

Above is the framework of forward CAR, as for the back-
ward direction, the main framework is similar. While the main
difference is that the two sequences have different meanings
and that we check if a picked state s can reach certain Oi

in Line 11 of Algorithm 1, i.e., SAT(s ∧ T,O′i), hence the
backward CAR searches for the successors of a state instead

of the predecessors.

IV. MOTIVATING EXAMPLE

In this section, we demonstrate a motivating example in
Figure 1 to explain the difference between CAR and IC3/PDR.
There are 8 states in total, 000 is the initial state and 111 is the
only state in ¬P (bad state). The transition relation is already
drawn out explicitly, and we can tell directly that this model
satisfies the safety property since the state 111 is unreachable
from the initial state.

0  0  0 1  1  0  

1  0  0 1  1  10  0  1

1  0  1

0  1  1

0  1  0

P

I

Fig. 1. Example to demonstrate the difference between CAR and IC3/PDR.

A. Model Checking by IC3/PDR

First we give a brief intuition of how IC3/PDR works.
IC3/PDR maintains an over-approximate sequence O, and
makes SAT queries to check whether certain Oi can reach
the bad state. If unsat, IC3/PDR updates the O-sequence with
the UC returned. Else, IC3/PDR obtains a new state and
recursively checks whether Oi−1 can reach the new state. The
over-approximate sequence O in IC3/PDR is initialized by
setting O0 = I and O1 = P , i.e., O0 is the initial state and O1

contains all states except for the bad state 111. IC3/PDR starts
to check whether states in O1 can reach ¬P by making the
SAT query SAT (O1 ∧ T ∧ ¬P ′), and the SAT solver returns
that the state 101 can reach ¬P . Then IC3/PDR recursively
checks whether O0 can reach 101. Since it is unreachable,
we assume that the unsatisfiable core returned is 101 itself.
Therefore we block 101 from O1, and since all states in O1

cannot reach ¬P , a new frame O2 = P is created.
IC3/PDR repeats the previous procedure by checking

whether states in O2 can reach ¬P , and it turns out that 101
can reach ¬P . Then it checks whether 101 is reachable from
O1. From the figure, the states 010 and 011 can reach 101, but
they are not reachable from O0. Therefore IC3/PDR blocks
010 and 011 from O1. After that there are only four states
inside O1, i.e., O1 = {000,110,100,001}. Since 101 is no
longer reachable from O1, IC3/PDR blocks 101 from O2.

Note that there is a propagation heuristic in IC3/PDR,
which tries to block the same UC in different frames. Since
previously 010 and 011 are blocked in O1, IC3/PDR now tries
to block them in O2 by checking whether those two states
are reachable from O1. Obviously, they are not. Therefore
IC3/PDR blocks 010 and 011 in O2. Afterwards we have
O2 = {000,110,100,001}. Now since O1 = O2 is true, which
means that states inside O1 cannot transit out of O1, O1 is an
invariant, or say, proof certificate. The safety property holds
and the IC3/PDR algorithm terminates.
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B. Model Checking by CAR

We consider here Forward CAR and demonstrate its execu-
tion on the above example. Similar to IC3/PDR, the first step is
to initialize the sequence, except that we need to initialize both
the over-approximate O-sequence and the under-approximate
U -sequence. According to Line 2 of Algorithm 1, we initialize
the two sequences by setting O0 to the initial state and setting
U0 to the bad state, i.e., O0 = {000}, U0 = {111}.

In step 0, CAR takes the bad state 111 from U0 and
checks whether O0 can reach 111 by making the SAT query
SAT (O0 ∧ T ∧ 111′) (Line 11 of Algorithm 1). Obviously,
the initial state cannot reach ¬P and suppose the UC returned
by the SAT solver is that the third bit of the state is 1. Then
CAR adds a new frame O1 = P and blocks the UC from O1

according to Line 20 of Algorithm 1, which means that all
states containing the third bit of 1 are deleted from O1, i.e.,
O1 = {000,100,110,010}.

In step 1, CAR repeatedly takes 111 from U0, and checks
whether O1 can reach 111. Obviously states in O1 cannot
reach 111 and suppose the UC returned by the SAT solver is
that the last two bits of the state are both 1. Then CAR adds
a new frame O2 = P and blocks the UC from O2, i.e., O2 =
{000,100,110,001,010,101}.

In step 2, CAR repeatedly takes 111 from U0 and checks
whether O2 can reach 111. It turns out that 101 ∈ O2 can
reach 111 . Then CAR creates a new frame U1 and adds
101 to U1 according to Line 16 of Algorithm 1, i.e., U1 =
{101}. Afterwards CAR recursively checks whether O1 can
reach 101, clearly 010 ∈ O1 can reach 101. Likewise, CAR
creates a new frame U2 and adds 010 to U2, i.e., U2 =
{010}. CAR recursively checks whether 010 is reachable from
O0. Obviously, it is not. Suppose that the UC is 010 itself,
then the UC is blocked from O1, i.e., O1 = {000,100,110}.
Then CAR in turn backtracks to check whether O1 can reach
101 and whether O2 can reach 111. Obviously, they are both
unreachable. Suppose that the UC to block is both the states
themselves, i.e., O2 = {000,100,110,001,010}, O3 = P .

In step 3, CAR takes 010 ∈ U2 and checks whether O3

can reach 010, clearly it is not and CAR blocks 010 in O4.
Afterwards CAR takes 101 ∈ U1 and checks whether O3

can reach 101. Obviously 010, 011 ∈ O3 can reach 101
and CAR recursively checks whether they are reachable from
O2. Clearly, both 010 and 011 are not, therefore they are all
blocked from O3. Now that no states in O3 can reach 101,
CAR then takes 111 ∈ U0 and checks whether O3 can reach
111. Likewise, 111 is reachable from 101 ∈ O3 but 101 is not
reachable from O2, therefore 101 is removed from O3, i.e.,
O3 = {000,100,110,001}.

Note that O3 = {000,100,110,001} and O2 ∪ O1 ∪ O0 =
{000,100,110,001,010}. Therefore O3 ⊆ O2 ∪O1 ∪O0 holds,
which means that states in O3 can only be reachable from
states in O2, O1 or O0. Therefore, CAR has successfully found
an invariant and proved that the safety property holds.

V. OUR APPROACHES

We propose four heuristics and integrate them in Algo-
rithm 1 (as shown in the text in red.) At Line 6, we propose

a heuristic called UC-propagation, which checks whether
there exist element of Oi(i ≥ k) in the O-sequence that
can also be contained in Oi+1. Moreover, such heuristic can
produce a safe result if there exists Oi(i ≥ k) such that
all of its elements can be propagated to Oi+1. This heuristic
complements the SAFECHECK procedure. At Line 15, there
could be more then one full state t that satisfies the SAT
query SAT (t∧ T, s′), i.e, there could be a partial assignment
t̂ such that t̂ also satisfies SAT (t̂ ∧ T, s′) and t̂ ⊇ t holds.
By replacing full assignment t with such partial assignment
t̂, the computation speeds up and the whole UNSAFECHECK
procedure can be accelerated. Therefore we propose a heuristic
GETPARTIAL(t, s) to produce a partial assignment t̂ from t.
We propose the heuristic of MUC-extraction at Line 19, which
can extract a MUC from c, to block more states at Oi+1 and
accelerate the convergence of the SAFECHECK procedure. At
Line 21 ,we propose a heuristic BLOCKDEAD(s) to block s
if it does not have any predecessors. In this case, we call s
a dead state and block it as the constraint in the SAT solver,
with the purpose of accelerating the computation.

All the proposed heuristics can be applied in the Forward
CAR. While the Dead-state detection and partial-state heuristic
cannot be applied in Backward CAR, as both of them are
based on obtaining the predecessors of states. As for the MUC-
extraction heuristic and UC-propagation heuristic, since Back-
ward CAR also depends on obtaining UC and blocking UC in
the O-sequence, both heuristics can be adopted analogously.

In the following subsections, we present in order the pro-
posed heuristics, namely, MUC-extraction, UC-propagation,
Partial-state generation, and Dead-state detection, which suc-
cessfully boost the safe-checking performance of CAR.

A. Heuristic I : MUC-Extraction
For the purpose of boosting the safe-checking performance

of CAR, we focus on accomplishing a faster convergence of
the over-approximate O-sequence. Notably, CAR adds UC
returned from the SAT solver to the O-sequence to block
states that are not reachable from the states in O-sequence,
i.e., Oi+1 := Oi+1 ∩¬c. As a result, a smaller UC represents
more states and thus blocks more states in the O-sequence.
Moreover, UC is also obtained and used to represent a states
set when we calculate dead state and partial state, extracting
a smaller UC out of the UC clearly benefits both procedures.
Therefore, we propose our first heuristic to extract the minimal
unsatisfiable core (MUC) from a UC.

Instead of using off-the-shelf tools to extract MUC, which is
both inconvenient and time-wasting, we choose to implement
the MUC-extraction algorithm [31], [32] inside CAR. Given
a UC, i.e., c = l1 ∧ l2 ∧ ... ∧ ln, we drop literals in c one
by one and then invoke the SAT solver to check whether the
unsatisfiable result is preserved. If not, the literal is in the
MUC and should be restored. Otherwise, the literal is not in
an MUC and can be removed permanently. Moreover, since
the SAT query returns unsatisfiable, we obtain a smaller UC
from the SAT solver, which accelerates the literal dropping
process.

The EXTRACTMUC procedure (Algorithm 2) takes a pre-
acquired unsatisfiable core Uc together with the corresponding
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Algorithm 2 MUC-Extraction
1: procedure EXTRACTMUC(Uc, remainder)
2: Muc := ∅
3: while Uc 6= ∅ do
4: l := GETLITERAL(Uc)
5: Uc := Uc \ {l}
6: if SAT(remainder, Uc ∧Muc) then
7: Muc :=Muc ∪ {l}
8: else
9: Cube uc := GETUNSATCORE()

10: Uc := uc \Muc

11: if ISPRIME(Uc) then
12: Muc := UNPRIME(Muc)

13: return Muc

remainder as inputs. The literal set Muc in Algorithm 2
stores the literals which belong to the MUC and is initialized
at Line 2. In the main loop (Line 3-10), when Uc is not
empty, a literal l ∈ Uc is chosen and dropped from Uc
(Line 5). Then it checks if l is in MUC by making the
SAT query SAT (remainder, Uc ∧ Muc) (Line 6). If the
SAT solver returns true, l is in MUC and then added to
Muc (Line 7). Otherwise, l is redundant and can be removed
permanently. Moreover, the SAT solver helps to remove some
extra literals in c by returning a smaller UC uc (Line 9), i.e.,
uc ⊆ Uc ∧Muc, so Uc can be replaced by uc ∧Muc (Line
10). When all literals in Uc have been dropped, i.e., Uc = ∅,
we have successfully extracted an MUC out of Uc, and return
Muc as the MUC we want (Line 13). Since Muc may contain
primed literals, Line 11-12 are added to un-prime such literals.

Note that the correctness of using MUC instead of UC
to refine the O-sequence is straightforward, since MUC is a
special kind of UC.

B. Heuristic II : UC-Propagation

In the SAFECHECK procedure, CAR checks whether there
exists some i (i ≤ k) such that Oi+1 is contained in the union
of Oj , where j ranges from 0 to i, by making the SAT query
SAT (∅,¬(Oi+1 ⇒ (

∨
0≤j≤iOj))). However, as the length

of O-sequence grows, the formula Oi+1 ⇒ (
∨

0≤j≤iOj) also
grows in size, and this makes it difficult for the SAT solver
to solve the formula and ultimately reduces the convergence
speed of safety checking. To mitigate this problem, we
propose our second heuristic, namely UC-propagation,
which provides another safe checking procedure in CAR.
The motivation of the UC-propagation heuristic directly
comes from the fact that the safe checking may converge
faster if more elements in Oi can also appear in Oi+1. In
particular, we prove that if there is Oi such that all of its
elements are also the elements of Oi+1, the safe result can
be concluded. To that end, UC-propagation makes the SAT
query SAT (Oi ∧ T, uc′) for every ¬uc ∈ Oi to decide if
¬uc can be added to Oi+1. If all ¬uc ∈ Oi falsify the query,
then Oi+1 ⊆ ¬uc1 ∧ ¬uc2 ∧ ... ∧ ¬ucn = Oi holds, thus the
system is safe.

Algorithm 3 UC-Propagation
1: procedure PROPAGATION(k)
2: for 0 ≤ i ≤ k − 1 do
3: flag := true
4: for (¬uc) ∈ Oi do
5: if not SAT (Oi ∧ T, uc′) then
6: Cube new uc := GETUNSATCORE()
7: Oi+1 := Oi+1 ∩ ¬new uc
8: else
9: flag = false;

10: i := i+ 1
11: if flag then return true
12: return false

The PROPAGATION procedure (Algorithm 3) takes the max-
imal frame level k of the O-sequence as the input. The main
loop (Line 2-11) enumerates 0 ≤ i ≤ k − 1 to check whether
Oi+1 ⊆ Oi holds for some i. flag is a variable initialized
to be true (Line 3). The second loop (Line 4-9) enumerates
¬uc ∈ Oi and makes the SAT query SAT (Oi ∧ T, uc′)
(Line 5). This query asks whether uc is reachable from Oi. If
the result is false, states in uc are not reachable from Oi, which
indicates that ¬uc represents a set of states that Oi cannot
reach. Therefore, ¬uc can be added to Oi+1. Moreover, we
get a smaller UC new uc ⊆ uc from the SAT solver (Line
6), the negation of which can be added into Oi+1 instead of
¬uc (Line 7). Notably, new uc represents more states than
uc, thus ¬uc contains ¬new uc and we have Oi+1 ⊆ ¬uc
after ¬new uc is added to Oi+1. Notably, IC3/PDR does
not compute new uc when doing the propagation. If some
propagation query returns true, flag is set to false, meaning
that ¬uc cannot be added to Oi+1. Otherwise, the whole prop-
agation procedure returns true, which implies that convergence
is committed.

Theorem 5.1: If the UC-propagation algorithm returns true,
the system is proved to be safe.

Proof: Algorithm 3 returns true if for some i, all ¬uc ∈
Oi falsify the query, and we have Oi+1 ⊆ ¬uc1 ∧ ¬uc2 ∧
¬uc3 ∧ ... ∧ ¬ucn = Oi. As a result, Oi+1 ⊆ (

∨
0≤j≤iOj)

holds, which meets the safe checking condition.

C. Heuristic III : Dead State Detection

In the UNSAFECHECK procedure, CAR checks whether
the state s is reachable from the states in Oi by making
the SAT query SAT (Oi ∧ T, s′). If it is satisfiable, a state
t that can reach s is obtained and CAR recursively checks
if SAT (Oi−1 ∧ T, t′) holds. Whereas an unsatisfiable result
suggests that s is not reachable from Oi and therefore can
be blocked in Oi+1. Note that s may be revisited, i.e., an
analogous SAT query SAT (Oj ∧ T, s′)(j 6= i) can be made.
We notice that there exists such a state s that SAT (Oi∧T, s′)
does not hold for an arbitrary i, even further we find out
that SAT (T, s′) is actually unsatisfiable. That is to say, s is
unreachable from any other states, and we refer to such a state
s as a dead state, which can be illustrated as in Figure 2. By
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Algorithm 4 The Dead-State Detection Implementation.
1: procedure BLOCKDEAD(s)
2: if not SAT (¬Deads ∧ T, s′) then
3: Cube uc := GETUNSATCORE()
4: uc := EXTRACTMUC(uc′,¬Deads ∧ T )
5: Deads := Deads ∪ uc
6: add ¬uc to SAT solver

blocking such dead states in the SAT solver, we can avoid
revisiting them and therefore save time to visit other states.
Moreover, since the SAT query SAT (T, s′) returns false, we
can obtain a UC from s, which we refer to as dead UC, and
therefore more states can be blocked by adding the negation
of the dead UC to the SAT solver. All UC obtained is added
to Deads, which denotes all the detected dead states. Notice
that if s is only reachable from a dead state (within one or
more transitions), we can also block s in SAT solver, for that
visiting s will eventually lead us to a dead state. Therefore, we
expand the definition of a dead state to the following definition
5.1.

Definition 5.1: A state s is a dead state if one of the
following conditions holds:
(1) SAT (T, s′) is unsatisfiable;
(2) s can only be reached from dead states.

The BLOCKDEAD(s) procedure (Algorithm 4) first checks
whether SAT (¬Deads∧T, s′) is unsatisfiable (Line 2), if so,
either s is unreachable from any other states, i.e., SAT (T, s′)
is unsatisfiable, or s is only reachable from states in Deads,
i.e., SAT (Deads ∧ T, s′) holds, we consider s a dead state
either way. Then we obtain a UC, i.e., uc ⊆ s (Line 3) such
that SAT (¬Deads ∧ T, uc′) is also unsatisfiable. Then uc is
added to Deads (Line 5) and is blocked in SAT solver (Line
6). Moreover, we adopt a EXTRACTMUC(uc′,¬Deads ∧ T )
procedure (Line 4), so that we can generate a MUC out of UC
and block more dead states.

Regarding the complexity of BLOCKDEAD(s), it can be
considered as follows: given s, the procedure is invoked at
most once in each frame level, according to Algorithm 1. Also,
it is not hard to see that in the worst case, there can be N
frame levels computed by CAR, where N is the number of
all states in the system. As a result, BLOCKDEAD(s) can be
invoked at most N2 times.

P

I
...

nO

2O
1O

s

Fig. 2. A high-level illustration of the Dead-state detection heuristic. The
state s is a dead state because no other state can reach it in an arbitrary step.

Algorithm 5 The Partial-State Generation Implementation
1: procedure GETPARTIAL(t, Inputt, s)
2: Assert (not SAT (Inputt ∧ T ∧ ¬s′, t))
3: Cube uc := GETUNSATCORE()
4: uc := EXTRACTMUC(uc, Inputt ∧ T ∧ ¬s′)
5: return uc

Theorem 5.2: The correctness of CAR is preserved after
integrating the Dead-state detection heuristic.

Proof: According to Algorithm 4, dead states are blocked
forever in the SAT computation (Line 6). Also by Defini-
tion5.1, dead states are those that cannot be reachable from
initial ones, which can be safely pruned during the state search
process. As a result, the integration of the heuristic does not
affect the correctness of the CAR framework.

D. Heuristic IV : Partial State Generation
In the UNSAFECHECK procedure, CAR makes the SAT

query SAT (Oi ∧ T, s′) to find out whether s is reachable
from Oi. If satisfiable, a full state t ∈ Oi is obtained such
that SAT (t ∧ T, s′) is satisfiable. However, there could be
more than one full state which satisfies SAT (t ∧ T, s′), i.e.,
there could be a partial assignment t̂ such that t̂ satisfies
SAT (t̂ ∧ T, s′) and t̂ ⊇ t holds, and we call such partial
assignment t̂ a partial state of t. Notice that t̂ represents a set
of states that can reach s, therefore we can avoid visiting states
inside t̂ separately by replacing t with t̂, and the computation
speeds up.

The GETPARTIAL(t, Inputt, s) procedure (Algorithm 5)
takes a state t, the input Inputt corresponding to t and a
state s reachable from t as inputs. Firstly it asserts the SAT
query SAT (Inputt ∧ T ∧ ¬s′, t) is unsatisfiable, given that
t can reach s, i.e., SAT (t ∧ T, s′) is satisfiable, therefore t
can not reach ¬s with the corresponding input Inputt, i.e,
SAT (Inputt∧T∧¬s′, t) is unsatisfiable. Under this assertion,
an unsatisfiable core uc can be obtained in Line 3 and uc
represents multiple states that can reach s. Analogously, we
extract a MUC from uc (Line 4) to expand the partial states.

P

I
...

nO

2O
1O

Fig. 3. An illustration of the Partial-state generation heuristic. Each red region
represents a set of states which can be covered by a partial state.

Theorem 5.3: The correctness of CAR is preserved after
integrating the Partial-state detection heuristic.

Proof: Assume t̂ is the partial state of t. According to
Algorithm 5, SAT (Inputt ∧ T ∧ ¬s′, t̂) is unsatisfiable, as t̂
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is the UC returned by SAT solver. Therefore, t̂ represents a set
of full state that can reach s (with the same input values). Note
that s is a state which can reach the bad state and has already
been added into the U-sequence (Line 16 of Algorithm 1). So t̂
can also reach the bad state as t̂ can reach s. Therefore adding
t̂ into the U-sequence does not change the meaning of the U-
sequence. On the other hand, when we check whether certain
Oi can reach t̂, and assume that it turns out unsatisfiable.
Then we can obtain a UC out of t̂ and add the UC into
Oi+1. The meaning of the O-sequence is also maintained as
the UC represents a set of state that are not reachable for Oi.
Therefore, the integration of the heuristic does not affect the
correctness of the CAR framework.

Notably, the Partial-state generation heuristic is also in-
tegrated into IC3/PDR [7], [8], and it is one of the two
main state-generalization techniques (The other one is called
ternary simulation [8]). Also, this heuristic is only applicable
to Forward CAR, because the assumption that the SAT query
SAT (Inputt ∧ T ∧ ¬s′, t) is unsatisfiable does not hold for
Backward CAR.

E. Motivating example of accelerating CAR by heuristics

Now we demonstrate how heuristics proposed in this paper
affect the performance of CAR. To describe the idea of CAR in
a simple way, the MUC-extraction heuristic has already been
in consideration for the above workflow, as the UCs returned
from SAT solver are minimal. One can see if the sizes of
returned UCs are larger, more frames and states have to be
involved before CAR is able to return safe.

For Dead-state detection, it is easy to see directly that the
states 010, 011 are dead states (they both have no predeces-
sors), which implies that state 101 is also a dead state (all its
predecessors are dead state). Therefore, we can conclude that
the bad state 111 is a dead state as well. And the correctness
proof in CAR can be easier made.

For UC-propagation, in step 2 of Section IV-B, we can
propagate the UC to different frames, so we propagate the pre-
viously obtained UC in O1 to O2 as states represented by the
UC are not reachable from O1, i.e., O2 = {000,100,110,001}.
In this way, O2 is smaller than that shown above, which makes
CAR converge more quickly.

For Partial-state generation, in step 3 of Section IV-B, the
partial state that can reach 101 is 01x, in which x can be
either 0 or 1. By using the partial state 01x instead of the
two independent states 010 and 011, CAR is able to save the
effort of enumerating the states later and therefore accelerates
the checking process.

VI. EXPERIMENTS

A. Experiment Setup

We evaluate all tools upon 749 instances in the aiger
format [33] from the benchmarks of the SINGLE safety
property track of the HWMCC in 2015 and 2017. We perform
the experiments on a cluster, which consists of 2304 processor
cores in 240 nodes running RedHat 4.8.5 and running at
2.5GHz, 96GB of memory. We set the memory limit to 8GB

and the time limit to 1 hour, following the same resource
settings in [28] and [12]. When we perform experiments, each
model-checking run has exclusive access to a dedicated node.

We integrate all proposed heuristics into the SimpleCAR
open-source model checker which implemented the CAR
algorithm [10]. We first demonstrate the overall performance
of CAR with all those heuristics, and then we analyze the
impact of each heuristic.

We consider pure Forward and Backward CAR without any
heuristics as the baseline of our experimental evaluation, and
denote them by using -f and -b flags in the following tables and
graphs. Upon the baseline, we activate each of the heuristics
to evaluate their impact. In the following tables and graphs,
-m, -pr, -d and -pa respectively denote MUC-extraction, UC-
propagation, Dead-state detection and Partial-state generation,
e.g. -f-m-pr-d-pa means that we run Forward CAR with all
those four heuristics, and -b-m-pr means that we run Backward
CAR with the MUC and UC-propagation heuristic. All tools
and algorithms evaluated in the experiments are listed in Table
III. Since we evaluate 14 configuration combinations for CAR
in the experiments, for convenience we only list 4 of them in
the table, and the other combinations are analogous.

To check the correctness of the results from different tools
(with different parameters), we compare results from other
solvers to make sure they are consistent. Excluding timeout
instances, all results among different checkers are consistent.
The artifacts (including the source code and experimental
results) are available at [34].

TABLE III
TOOLS AND ALGORITHMS EVALUATED IN THE EXPERIMENTS.

Tool Algorithm Configuration Flags
ABC [35] PDR (ABC-pdr) -c ’pdr’

IIMC [36] IC3 (iimc-ic3) -t ic3
IC3 (iimc-ic3r) -t ic3r

IC3 Ref [37] IC3 (ic3-ref) -b

SimpleCAR [38]

Forward CAR (-f) -f
Forward CAR (-f-m-pr-d-pa) -f -muc -propagate -dead -partial
Backward CAR (-b) -b
Backward CAR (-b-m-pr) -b -muc -propagate

B. Overall Results

We first present the overall experiment results, in which
we compare CAR’s performance to different implementations
of IC3/PDR, which is often considered the most efficient
complete model checking algorithm. CAR can perform in
both the forward and backward directions, yet the IC3/PDR
implementation of ABC only performs the forward direction.
To be fair, we also involve the iimc checker that can perform
the reverse IC3/PDR, i.e., the backward direction of IC3/PDR.
Meanwhile, the ic3-ref implementation is selected so as to
add diversity. Figure 4 shows the comparison of the overall
performance among different approaches, depicting the growth
of total solved instances (the y-axis) in the given CPU time
(the x-axis). And the detailed experimental data is in Table IV
and Figure 5.

As Figure 4 and Table IV show, when all heuristics
are turned on, Forward CAR can solve 356 instances and
Backward CAR can solve 355 instances. Comparing to CAR
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Fig. 5. Comparison between different approaches. Points above the diagonal
represent that the approach of the x-axis has better performance, while points
below the diagonal represent the opposite.

without any heuristics, there is a 53.4% boost in the number
of solved instances for Forward CAR, and an 11.6% boost for
Backward CAR. However, Backward CAR with all heuristics
uniquely solves 43 instances compared to ABC-pdr & iimc-
ic3r, while Forward CAR can only uniquely solve 5 instances.
For different IC3/PDR implementations, although ABC-pdr
solves 398 instances, which is the best result, the performances
of other IC3/PDR implementations are fairly close to the best
one.

Combining both Forward and Backward CAR together,
integrating all heuristics presented in this paper (totally solve
412 instances) is able to outperform the combination of

TABLE IV
DETAILED EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES. THE
TIMEOUT INSTANCES ARE GIVEN A TIME OF 3600S TO CALCULATE THE

AVERAGE TIME OF 749 BENCHMARKS.

Approaches # Solved
#Uniquely solved

(compare to
ABC-pdr & iimc-ic3r)

Average time (sec)

CAR-f-m-pr-d-pa & CAR-b-m-pr 412 44 1710
ABC-pdr & iimc-ic3r 402 0 1728

CAR-f & CAR-b 349 47 1957
ABC-pdr 398 0 1745

ic3-ref 397 27 1760
iimc-ic3 393 22 1813

CAR-f-m-pr-d-pa 356 5 1988
CAR-b-m-pr 355 43 1952

CAR-f 232 8 2521
CAR-b 318 44 2106

iimc-ic3r 232 0 2493

Forward and Backward IC3/PDR (totally solve 402 instances),
which solves 10 more instances than the combined IC3/PDR
and can uniquely solve 44 instances. There is also an 18%
boost compared to the combination of the original Forward
and Backward CAR. For the single direction, Forward CAR
can solve > 90% of the instances that are solved by ABC-
pdr (that is, 356 of 398), which performs slightly less than
Forward IC3/PDR. However, Backward CAR performs much
better than Backward IC3/PDR (iimc-ic3r), considering the
amounts of solved instances are 355 and 232, respectively.
Moreover, most cases solved by Backward IC3/PDR can
also be solved by Forward IC3/PDR, which indicates that
Backward IC3/PDR is not that useful when combined together
with Forward IC3/PDR. Meanwhile, Backward CAR can be
the sufficient complement of Forward CAR, because it is able
to contribute 44 uniquely-solved instances.

We investigate the instances that Forward CAR cannot solve
but IC3/PDR can solve. The observation is that IC3/PDR
updates the over-approximate sequence more efficiently than
(Forward) CAR. Take the instance 6s52.aig for example, ABC-
pdr extends 321 frames in the over-approximate sequence
within 529.54s and then finds the invariant to return safe,
while CAR only extends 9 frames within the 1h time limit.
In principle, both IC3/PDR and CAR prove that the model
satisfies the property within up to K steps if they successfully
extend the size of the over-approximate sequence to K. The
reason is that the elements of each frame computed by MUC
in CAR are not as “good” as those computed by MIC in
IC3/PDR, making CAR converge slower than IC3/PDR. It is
interesting to explore further whether CAR can do better in
refining the over-approximate sequence, which can influence
the model-checking performance significantly.

In summary, we conclude that by integrating the four heuris-
tics in this paper, CAR in the forward and backward direction
is able to outperform IC3/PDR in both directions, though for
the single direction CAR (in forward or backward) is still a
bit less competitive as (Forward) IC3/PDR. We also observe
that Backward IC3/PDR is far less useful than Backward CAR
in a portfolio, which indicates that CAR is also a promising
model-checking technique other than IC3/PDR.
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C. Detailed Evaluation of Different Heuristics

Now we evaluate the impact of different heuristics by
activating each of those heuristics separately in different
configurations of CAR. For example, to find out whether the
Dead-state detection heuristic is efficient, we first set up an
experimental group with the configurations -f and -f-m-pr-pa
, then we activate the Dead-state detection heuristic by setting
up the -f-d and -f-d-m-pr-pa groups. Afterward, we can analyze
the impact of the Dead-state detection heuristic by comparing
the experiment results of those groups.

1) MUC Extraction: As is shown in Table V and Figure 6,
the MUC-extraction heuristic is quite effective as activating it
can bring a boost in the number of solved instances when we
run Forward CAR, e.g. adopting the MUC-extraction heuristic
on the basis of -f helps solve 29 more instances and it is
the same for -f-d-pr-pa. However, MUC-extraction does not
help as much when we run backward CAR. And we also
notice that the MUC-extraction heuristic helps solve the safe
instances, mainly because that MUC is used to refine the
over-approximate sequence, which is responsible for proving
correctness. And the reason why the MUC-extraction heuristic
does not help solve unsafe instances is probably that it takes
additional efforts to enumerate literals inside UC and invoke
the corresponding SAT call, therefore CAR has less chance
to search for a counterexample, and this can also be verified
by the fact that in Figure. 6 spots representing jointly solved
instances are more likely to be above the diagonal.

TABLE V
IMPACT OF THE MUC-EXTRACTION HEURISTIC.

Configurations # Solved # Safe # Unsafe Average time (sec)
-f-d-m-pr-pa 356 256 100 1988

-f-d-pr-pa 322 233 89 2120
-f-m 261 183 78 2425

-f 232 151 81 2521
-b-m-pr 355 219 136 1952

-b-pr 351 209 142 1956
-b-m 339 202 137 2035

-b 318 182 136 2106
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Fig. 6. Comparison among different approaches to evaluate the impact of the
MUC-extraction heuristic.

2) UC Propagation: The experiment results are shown in
Table VI and Figure 7. It turns out that the UC-propagation
heuristic leads to a boost in the number of solved instances,
for both Forward CAR and Backward CAR. Like the MUC-
extraction heuristic, the UC-propagation helps expand the
over-approximate sequence and therefore only contributes to
solving safe instances. However, UC-propagation does not take
as much time as the MUC-extraction heuristic does, since it
requires fewer SAT queries.

TABLE VI
IMPACT OF THE UC-PROPAGATION HEURISTIC.

Configurations # Solved # Safe # Unsafe Average time (sec)
-f-d-m-pr-pa 356 256 100 1988

-f-d-m-pa 325 237 88 2120
-f-pr 272 190 82 2349

-f 232 151 81 2521
-b-m-pr 355 219 136 1952

-b-m 339 202 137 2035
-b-pr 351 209 142 1956

-b 318 182 136 2106
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Fig. 7. Comparison among different approaches to evaluate the impact of the
UC-propagation heuristic.

3) Dead State Detection: From the experiment results in
Table VII, the Dead-state detection heuristic seems not so
efficient, as there is no obvious increase in the number of
solved instances after adopting such a heuristic. Moreover,
there is a sharp decrease in the number of solved unsafe
instances when we adopt the dead-state detection heuristic
on the basis of pure Forward CAR, e.g. -f solves 81 unsafe
instances while -f-d only solves 60 unsafe instances. But when
we adopt the dead-state detection heuristic on the basis of
-f-m-pr-pa, there is an increase of 5 newly solved unsafe
instances. We looked into the instances that cannot be solved
after adding the dead-state detection heuristic, and found that
it failed to solve a large class of benchmarks (from oski). The
reason is probably that dead-state detection costs too much
on this kind of benchmark and therefore hurts the overall
checking performance.

4) Partial State Generation: As is shown in table VIII and
Figure 8, the Partial-state generation heuristic is the most
crucial one among the above four heuristics, as there is a loss
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TABLE VII
IMPACT OF THE DEAD-STATE DETECTION HEURISTIC.

Configurations # Solved # Safe # Unsafe Average time (sec)
-f-d-m-pr-pa 356 256 100 1988
-f-m-pr-pa 351 256 95 1978

-f-d 224 164 60 2563
-f 232 151 81 2521

of 86 instances in the total solved instances when we remove
this heuristic from the configuration -f-d-m-pr-pa. Especially,
the Partial-state generation heuristic helps solve both safe and
unsafe instances, probably because it replaces a single state
with a state set and helps refine both the over-approximate
and the under-approximate sequences.

TABLE VIII
IMPACT OF THE PARTIAL-STATE GENERATION HEURISTIC.

Configurations # Solved # Safe # Unsafe Average time (sec)
-f-d-m-pr-pa 356 256 100 1988

-f-d-m-pr 270 210 60 2368
-f-pr 295 205 90 2349

-f 232 151 81 2521
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Fig. 8. Comparison among different approaches to evaluate the impact of the
Partial-state generation heuristic.

In summary, our experiments show that by equipping the
four heuristics proposed in this paper, CAR is able to outper-
form IC3/PDR by solving 10 more instances, as well as to
complement IC3/PDR by uniquely solving 44 instances that
IC3/PDR cannot solve. CAR is thus able to contribute to the
current model-checking portfolio that provides the best result
for practical purposes.

VII. CONCLUSION

In this paper, we present four kinds of heuristics to boost
the performance of the CAR model checking algorithm. Our
results show that CAR in both the forward and backward
directions can outperform IC3/PDR in both directions. We
also analyze the pros and cons from the results for readers who
are interested to explore a better model-checking performance.
Although computing MUC in CAR is not as efficient as
computing MIC in IC3/PDR for proof correctness, we propose
to combine both directions of CAR to mitigate this drawback
as well as keep its previous advantage on bug-finding. This
provides a new (potential) direction to explore efficient model-
checking techniques other than IC3/PDR.

There are kinds of improvements that can be done in the
future. For example, we will improve the implementation of
our algorithms from the code level, as based on our experience,

the code quality can significantly affect the performance. Also,
the MUC heuristic is still a heavy process even though some
limits to the procedure have been added. In the future, we need
to find better ways to balance the sizes of unsatisfiable cores
and the computation cost. More importantly, it is worth inves-
tigating the differences between the O-sequences of IC3/PDR
and CAR, as they are probably the main reason causing the
performance divergence of these two approaches.
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