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ABSTRACT
Bounded Model Checking (BMC) is so far considered as the best

engine for bug-finding in hardware model checking. Given a bound

𝐾 , BMC can detect if there is a counterexample to a given temporal

property within 𝐾 steps from the initial state, thus performing a

global-style search. Recently, a SAT-based model-checking tech-

nique called Complementary Approximate Reachability (CAR) was
shown to be complementary to BMC, in the sense that frequently

they can solve instances that the other technique cannot, within the

same time limit. CAR detects a counterexample gradually with the

guidance of an over-approximating state sequence, and performs a

local-style search. In this paper, we consider three different ways

to combine BMC and CAR. Our experiments show that they all

outperform BMC and CAR on their own, and solve instances that

cannot be solved by these two techniques. Our findings are based

on a comprehensive experimental evaluation using the benchmarks

of two hardware model checking competitions.

1 INTRODUCTION
Model checking [5, 6] is an automatic technique for formal veri-

fication of hardware and software designs, see e.g., [10] and [7].

Given a formal model𝑀 and a temporal property 𝑃 , model checking

answers the question whether𝑀 |= 𝑃 , i.e., whether all the state se-
quences in𝑀 that begin from an initial state satisfy 𝑃 . If the answer

is negative then a counterexample to the property, namely a bug, is

detected by the checker and presented to the user. If 𝑃 is restricted

to be a safety property [22], the counterexample is a loop-free state

sequence starting at the initial state and ending with a state that

violates 𝑃 . In this paper, we only focus on such properties.

A bit of history: While explicit-state model checking of a safety

formula was used in AT&T already in the 1980’s [21, 23], it was the

introduction of symbolic model checking [15, 27] based on Bryant’s

OBDDs [14] in the early 1990’s that pushed several EDA compa-

nies to develop this technique, initially for internal use and later

as products. OBDDs can require exponential space in the number

of inputs, which limits the size of verified models. A major break-

through was made with the introduction of SAT-based bounded

model checking – BMC – in 1999 [8, 9]. SAT [18], unlike BDDs, do

not suffer from the same practical memory bottleneck of BDDs ,

and can be remarkably fast in practice. On the other hand, BMC in

its basic form is not complete - it can only detect bugs up to a given

bound, and cannot prove that they do not exist in deeper cycles.

Since BMC is based on unrolling the transition relation, the size as

well as the number of variables in the CNF formula grow linearly

with the bound 𝑘 , which limits the capability of BMC to finding

relatively shallow bugs.

* Jianwen Li is the corresponding author (lijwen2748@gmail.com).

There are also SAT-based model-checking techniques that are

complete, most notably Interpolation-based model checking (IMC)
[26], IC3/PDR [12, 17, 19] and CAR [16, 24, 25]. IC3/PDR and CAR
do not rely on unrolling and are hence potentially better at detecting

deep bugs. These techniques produce a much larger number of SAT
queries compared to BMC, but each of them is based on a single

copy of the transition relation, which is solved very fast by modern

SAT solvers (typically thousands of such queries can be solved in a

second). From previous evaluation studies, BMC and CAR perform

better when it comes to bug-finding than IMC and IC3/PDR [24].

In the EDA industry, typically BMC has the best performance as a

bug-finder, comparing to the complete model-checking techniques
1
.

CAR is rather recent and was not experimented with in the industry.

Notably, there are several remarkable improvements on IC3/PDR
such as Avy [29, 30] and QUIP [20], to name a few. However, they

are not considered in this article because they cannot perform

better on bug-finding than BMC and CAR based on a previous

evaluation [16, 24].

CAR is able to complementBMC by solving instances that cannot

be solved by the latter within a given time limit, though it does not

have a competitive overall performance as BMC in bug detection. A

model checker that is complementary to another one is important in

a parallel portfolio setting (i.e., running several engines in parallel),

which is a common practice in the industry. The natural question

that we address here, is whether it is possible to find a faster bug-

finding algorithm, by inheriting the advantages of both of these

techniques. This paper addresses this question, by presenting three

integration techniques of BMC and CAR. We will describe CAR in

detail in the next section. For now it suffices to say that it is similar

to the more well-known IC3/PDR technique in the sense that it

maintains symbolically sets of states that are being updated with

easy-to-solve SAT queries. Specifically it maintains a sequence of

state sets𝑈 that underapproximate reachable states, and a separate

sequence 𝑂 of state sets that overapproximate the states that can

reach a bad state, i.e., a state that satisfies ¬𝑃 . It searches a𝑈 state

that can reach an 𝑂 state, and then attempts to progress from the

𝑂 state all the way to ¬𝑃 . CAR uses a backtracking mechanism,

which iteratively widens the𝑈 sets and narrows the 𝑂 sets, until

either a path to ¬𝑃 is found (i.e., a counterexample), or it is proven

that no prefix from an initial state can be extended to such a path.

The first integration techniques that we will present is called

BICAR, short for CAR-aided BMC. In the first stage of BICAR, we
run BMC up to a given time limit (alternatively, as long as it makes

progress with the bound). Suppose that no counterexample was

found within this limit, and that the last bound that it was able to

prove safe is 𝑘 . In each of the 𝑘 unsatisfiable SAT queries we save

the unsatisfiable core. In the second phase of BICAR, we use the

1
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negation of these cores to initialize the overapproximating sequence

of CAR, and then run CAR.
The second integration technique is called BAC, short for BMC-

aided CAR. It leverages BMC to try and escape from regions in the

search space in which CAR is struggling to make progress. The

original CAR uses a depth-first strategy to find new states. We

learned that in most instances that cannot be solved by CAR, it is
because it ‘gets stuck’ while backtracking within a sub-sequence of

𝑂 , say from𝑂 𝑗 to𝑂𝑖 , for 𝑗 ≥ 𝑖 ≥ 0 (CAR attempts to progress from

a large index set to a small index set, where 𝑂0 = ¬𝑃 ). Inspired by

this observation, BAC identifies such scenarios by monitoring the

search depth that it already reached (𝑖 in this case) and then invokes

BMC to check whether a state 𝑠 in 𝑂 𝑗 has a successor in 𝑂𝑖−1 (i.e.,
one frame closer to ¬𝑃 ) in 𝑗 − 𝑖 + 1 steps, namely by solving

𝑠 (0) ∧
(∧

0≤𝑚≤ 𝑗−𝑖) 𝑇
(𝑚)

)
∧𝑂 ( 𝑗−𝑖+1)

𝑖−1 . (1)

The superscripts represent the cycle index to which the predicate’s

variables are renamed, e.g., 𝑇 (𝑚)
is the transition relation where

the variables are renamed to those that represent cycles𝑚,𝑚 + 1.

The last integration technique is called K-CAR, a simple variant

of CAR that allows the given state to find its successors in up to 𝑘

steps. The original CAR only uses 𝑘 = 1, hence the main SAT query

input has the form of 𝑠 ∧𝑇 ∧𝑂 ′
𝑖
, where𝑂 ′

𝑖
represents the next-state

version of 𝑂𝑖 . If this query is satisfiable, a successor of 𝑠 in 𝑂𝑖 can

be computed from the satisfying assignment. Unlike CAR, K-CAR
checks whether a successor of 𝑠 in 𝑘 (≥ 1) steps is in 𝑂𝑖 , i.e., the
corresponding query is generalized to

∨
1≤ 𝑗≤𝑘

(
𝑠 (0) ∧

(∧
0≤𝑚≤ 𝑗−1𝑇

(𝑚)
)
∧𝑂 ( 𝑗)

𝑖

)
. (2)

It should be highlighted that our suggested algorithms only work

as bug-finders, i.e., they are not complete.

We conducted a comprehensive experimental evaluation of our

implementation of these algorithms inside SimpleCAR [24], a tool

that implements CAR. For this we also implemented BMC inside

SimpleCAR. Hence these implementation of CAR and BMC served

as our baseline for the comparison. As benchmarks, we took the

instances from the hardware model checking competitions in 2015

and 2017 that have a failing safety property. Our results show that

all three algorithms are able to outperform both CAR and BMC, and
solve instances that cannot be solved by both. Our implementation

of BMC inside SimpleCAR is rather naive, so we also compared

our results to the state-of-the-art BMC solver inside ABC [13]

(henceforth, ABC-BMC). It turns out that from our three algorithms

only BAC can outperform it, but all three algorithms are able to

solve instances that it cannot within a given timeout. In the future

we intend to integrate ABC-BMC inside SimpleCAR to enjoy its

superior implementation of BMC.
We continue in the next sectionwith preliminaries. Sec. 3 presents

the three new bug-finding algorithms in detail. Sec. 4 shows the

experimental results. Finally, Sec. 5 summarizes the contributions

and discusses future work.

2 PRELIMINARIES
2.1 Notation and SAT Solving
We assume the reader is familiar with standard propositional logic

terminology and SAT. For each variable 𝑥 , there exists a correspond-

ing variable 𝑥 ′ (the primed version of 𝑥 ). If𝑉 is a set of variables,𝑉 ′

is the set obtained by replacing each element in 𝑉 with its primed

version. Given a formula 𝜑 , 𝜑 ′ is the formula obtained by replacing

each variable occurring in 𝜑 with the corresponding primed vari-

able, whereas 𝜑 (𝑖)
denotes the formula obtained by 𝑖 consecutive

applications of priming, i.e., 𝜑 (0) = 𝜑 and 𝜑 (𝑖) = (𝜑 (𝑖−1) )′. Given
two formulas 𝜑 and𝜓 , we denote with 𝜑 |= 𝜓 if all the models of 𝜑

are also models of𝜓 .

A SAT solver is a procedure for deciding the satisfiability of a

given propositional formula 𝜑 in Conjunctive Normal Form (CNF),

i.e., it returns true iff 𝜑 has at least one model. We will assume that

our SAT solver supports at least the following API:

• IsSat(𝜙) checks the satisfiability of the input formula 𝜙 ;

• SatAssume(𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠, 𝜙) checks the satisfiability of 𝜙

under the given additional assumptions (a list of literals)

𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠 , as in [3, 28]

• GetModel() retrieves the model computed by a previous

SatAssume() or a IsSat() call, and GetModel() |𝑉 returns

the projection of that model to 𝑉 ;

• GetUnsatAssumptions() retrieves an unsatisfiable core

(𝑈𝐶) of the assumption literals of the previous SatAssume(𝑎𝑠-
𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠, 𝜙) call, i.e., a subset of the assumption literals that

is enough to make the formula unsatisfiable.

2.2 Safety Model Checking
Definition 1 (Boolean Transition System). A Boolean tran-

sition system is a tuple (𝑉 , 𝐼,𝑇 ) where
• 𝑉 and 𝑉 ′

denote the set of variables in the present state and

the next state, respectively;

• 𝐼 is a propositional formula corresponding to the set of initial

states;

• 𝑇 is a propositional formula over 𝑉 ∪ 𝑉 ′
for the transition

relation.

Given a transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ), its state space is the
set of possible variable assignments, which is a subset of 2

𝑉
. Also,

a state of 𝑆𝑦𝑠 is a cube over 𝑉 . A path of length 𝑛 in system 𝑆𝑦𝑠 is

a finite state sequence 𝑠1, . . . , 𝑠𝑛 such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 ∪ 𝑠 ′𝑖+1 |= 𝑇
holds for 0 ≤ 𝑖 ≤ 𝑛−1. Let𝑋 ⊆ 2

𝑉
be a set of states in 𝑆𝑦𝑠 . The set of

𝑋 ’s successor states is defined as 𝑅(𝑋 ) = {𝑡 | (𝑠 ∪ 𝑡 ′) |= 𝑇, 𝑠 ∈ 𝑋 }.
Conversely, the set of predecessors of states in 𝑋 is defined as

𝑅 (−1) (𝑋 ) = {𝑠 | (𝑠 ∪ 𝑡 ′) |= 𝑇, 𝑡 ′ ∈ 𝑋 ′}. Recursively, we define

𝑅0 (𝑋 ) = 𝑋 and 𝑅𝑖 (𝑋 ) = 𝑅(𝑅𝑖−1 (𝑋 )) where 𝑖 > 0, and the notation

𝑅−𝑖 (𝑋 ) is defined analogously. Intuitively, 𝑅𝑖 (𝑋 ) denotes the states
reachable from 𝑋 in 𝑖 steps, and 𝑅−𝑖 (𝑋 ) denotes the states that can
reach 𝑋 in 𝑖 steps.

Given a transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety property 𝑃 ,
a model checker either proves that 𝑃 holds for any state reachable

from an initial state in 𝐼 , or disproves 𝑃 by producing a counterex-

ample, which is a finite path from one of the initial states to a state

violating 𝑃 . In the former case, we say that the system is safe, and

in the latter case, we say that the system is unsafe.
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In this article, we frequently use a Boolean formula𝜑 to represent

symbolically the set of states 𝑆 = {𝑠 | 𝑠 |= 𝜑}, and a set of states 𝑆

to represent the Boolean formula

∨
𝑠∈𝑆 𝑠 .

2.3 BMC and CAR
2.3.1 Bounded Model Checking. (BMC) is a well-known incom-

plete model checking algorithm. Given a bound 𝐾 , BMC tries to

find a counterexample whose length is 𝐾 (alternatively, up to 𝐾 ), by

a reduction to a sequence of SAT queries. More specifically, given

a transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety property 𝑃 , BMC
calls a SAT solver with the formula

𝐼 (0) ∧
∧

0≤𝑖<𝐾
𝑇 (𝑖) ∧ (¬𝑃 (𝐾) ) . (3)

If this formula is satisfiable, the corresponding model represents a

counterexample to the property 𝑃 . Otherwise, the user may decide

to increase 𝐾 and retry – the only limit being the run time. BMC
is famous for its efficiency on bug-finding, especially if the bug is

relatively shallow.

2.3.2 Complementary Approximate Reachability. (CAR), is a rela-
tively new SAT-based safety model checking approach that is essen-

tially a reachability-analysis algorithm, inspired by IC3/PDR [25].

Unlike BMC, CAR is complete, i.e., it can also prove correctness.

CAR maintains two sequences of state sets (also called ‘frames’),

that are defined as follows:

Definition 2 (Over/Under Approximating State Seqences).

Given a transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety property 𝑃 , the
over-approximating state sequence 𝑂 ≡ 𝑂0,𝑂1, . . . ,𝑂𝑖 (𝑖 ≥ 0), and
the under-approximating state sequence𝑈 ≡ 𝑈0,𝑈1, . . . ,𝑈 𝑗 ( 𝑗 ≥ 0)
are finite sequences of state sets such that, for 𝑘 ≥ 0:

𝑂-sequence 𝑈 -sequence

Base: 𝑂0 = ¬𝑃 𝑈0 = 𝐼

Induction: 𝑂𝑘+1 ⊇ 𝑅−1 (𝑂𝑘 ) 𝑈𝑘+1 ⊆ 𝑅(𝑈𝑘 )
Constraint: 𝑂𝑘 ∩ 𝐼 = ∅ −−

These sequences determine the termination of CAR as follows:

• Return “Unsafe" if ∃𝑖 ·𝑈𝑖 ∩ ¬𝑃 ≠ ∅.
• Return “Safe" if ∃𝑖 ≥ 1 · (⋃𝑖

𝑗=0𝑂 𝑗 ) ⊇ 𝑂𝑖+1.

We note thatCAR can also use the over and under approximating

sequences reversed, i.e., use the over-approximating sequence in

the forward direction, from the initial state towards the negated

property, while using the under-approximating sequence from the

negated property towards the initial state. However, in this article

we will only use the direction as stated in Definition 2 (this was

called ‘backward CAR’ in [24]).

Algorithm 1 describes CAR. It progresses by widening the 𝑈

sets, and narrowing the 𝑂 sets, which are initialized at Line 2 to

𝐼 and ¬𝑃 , respectively. The algorithm maintains a stack of pairs

⟨𝑠𝑡𝑎𝑡𝑒, 𝑙𝑒𝑣𝑒𝑙⟩ where 𝑙𝑒𝑣𝑒𝑙 refers to an index of an 𝑂 frame. 𝑂𝑡𝑚𝑝 ,

initialized to ¬𝐼 in Line 4 and later updated, represents the next

frame to be created.

Algorithm 1: Complementary Approximate Reachability

(CAR).
Input: A transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety

property 𝑃

Output: “Safe” or (“Unsafe” + a counterexample)

1 if IsSat(𝐼 ∧ ¬𝑃) then return “Unsafe”

2 𝑈0 B 𝐼 , 𝑂0 B ¬𝑃
3 while true do
4 𝑂𝑡𝑚𝑝 B ¬𝐼
5 while 𝑠𝑡𝑎𝑡𝑒 B PickState(𝑈 ) is successful do
6 𝑠𝑡𝑎𝑐𝑘 B ∅
7 𝑠𝑡𝑎𝑐𝑘.push(𝑠𝑡𝑎𝑡𝑒, |𝑂 | − 1)
8 while |𝑠𝑡𝑎𝑐𝑘 | ≠ 0 do
9 (𝑠, 𝑙) B 𝑠𝑡𝑎𝑐𝑘.top()

10 if 𝑙 < 0 then return “Unsafe"

11 if SatAssume(𝑠,𝑇 ∧𝑂 ′
𝑙
) then // Assume 𝑠 ∈ 𝑈 𝑗

12 𝑡 (1) B GetModel() |𝑉 ′

13 𝑈 𝑗+1 B 𝑈 𝑗+1 ∪ 𝑡 (1) // Widening 𝑈

14 𝑠𝑡𝑎𝑐𝑘.push(𝑡, 𝑙 − 1)
15 else
16 𝑠𝑡𝑎𝑐𝑘.pop()
17 𝑢𝑐 B GetUnsatAssumptions()
18 if (𝑙 + 1 < |𝑂 |) then 𝑂𝑙+1 B 𝑂𝑙+1 ∧ (¬𝑢𝑐)
19 else 𝑂𝑡𝑚𝑝 B 𝑂𝑡𝑚𝑝 ∧ (¬𝑢𝑐)
20 while 𝑙 + 1 < |𝑂 | and 𝑠 ∉ 𝑂𝑙+1 do 𝑙 := 𝑙 + 1

21 if 𝑙 + 1 < |𝑂 | then 𝑠𝑡𝑎𝑐𝑘.push(𝑠, 𝑙 + 1)

22 if ∃𝑖 ≥ 1 s.t. (⋃
0≤ 𝑗≤𝑖 𝑂 𝑗 ) ⊇ 𝑂𝑖+1 then return “Safe"

23 Add a new state-set to 𝑂 and initialize it to 𝑂𝑡𝑚𝑝

Initially a state from the𝑈 -sequence is heuristically picked (Line

5) – by default from the end to the beginning – and pushed to the

stack. In each iteration of the internal loop, CAR checks whether

the state at the top of the stack, call it 𝑠 , can transit to the𝑂𝑙 frame.

This is done by checking if 𝑠 ∧ 𝑇 ∧ 𝑂𝑙 ′ is satisfiable (Line 11). If
yes, a new state 𝑡 ∈ 𝑂𝑙 is extracted from the model, to update the

𝑈 -sequence (Line 12-14), effectively widening it; Otherwise, the

negation of the unsatisfiable core is used to constrain the 𝑂 frame

of 𝑠 (level 𝑙 + 1), effectively narrowing it (Lines 16-18), and pushing

𝑠 back to the stack. In Line 20 CAR skips frames already block 𝑠 .

Fig. 1 shows a high-level depiction of the search in lines 5-23 of

Algorithm 1. In this figure and those after

𝜑𝑖 = ¬𝑂0 ∧ ¬𝑂1 ∧ ... ∧ ¬𝑂𝑖 , (4)

hence𝜑𝑖 represents an underapproximating set of states that cannot

reach ¬𝑃 within 𝑖 steps. Obviously, 𝜑𝑖 ⊇ 𝜑𝑖+1 and
𝑠 ∈ 𝜑𝑖 \ 𝜑𝑖+1 ⇒ 𝑠 ∈ 𝑂𝑖+1 . (5)

Note that narrowing 𝑂𝑖+1 by blocking 𝑠 is equivalent to moving 𝑠

from 𝜑𝑖 to 𝜑𝑖+1. Also note that while the 𝜑 sequence is convenient

for understanding CAR, CAR does not compute it explicitly.

At Line 5, every state 𝑠 ∈ 𝑈 is guaranteed to be in some 𝜑𝑖 , for

0 ≤ 𝑖 ≤ 𝑛, where 𝑛 = |𝑂 | − 1. Starting from some state in 𝜑𝑛 , CAR
searches a new state that is in 𝜑𝑛−1 but not in 𝜑𝑛 . If it succeeds, the

3
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Figure 1: A high-level depiction of the search in CAR (Al-
gorithm 1). At each step it attempts to transit to a lower 𝑂
frame, which, according to (4), is the same as transiting to a
lower 𝜑 layer, towards ¬𝑃 , as shown here. This search process
involves backtracking (not shown here), and is restricted to
states in the 𝑈 sequence, namely states that are reachable
from 𝐼 .

process is repeated from that state, the stopping condition being

that we reached ¬𝑃 (line 10). Otherwise, a state 𝑠 in 𝜑𝑖 may be

moved to 𝜑𝑖+1 (or even higher because of line 20) because of the

narrowing of the𝑂-sequence (see (5) and the discussion that follows

it). Then, a successor to 𝑠 in 𝜑𝑖+1 will be searched (Line 21), and

if successful the process continues based on the new successor.

We call this step backtracking. Lastly, CAR returns “Safe” if the 𝑂

sequence includes all the states that can reach ¬𝑃 – this is checked

via the condition in line 22, which was also mentioned as part of

Definition 2.

Although CAR is prior work, and its correctness was proven

in [4], we prove here completeness, to show later on why our

modifications break this proof and make the algorithm incomplete.

Proposition 1 (Completeness). If 𝑆𝑦𝑠 ̸ |= 𝑃 , then CAR returns

“unsafe”.

Proof. Note that the alternative, namely thatCAR returns “safe”,

can only occur in line 22, hence we should prove that this does not

happen in the presence of a counterexample. Let 𝑠0, ..., 𝑠𝑛 be the

shortest counterexample (𝑛 + 1 states). We will focus in this proof

on the case that CAR reaches line 22 with |𝑈 | + |𝑂 | ≤ 𝑛, because

otherwise it is not hard to see thatCARwill find the counterexample.

When CAR reaches line 22, there is no 1-step transition from 𝑈 to

𝑂 . Let |𝑂 | = 𝑡 , for 0 ≤ 𝑡 ≤ 𝑛. To simplify the rest of the proof, we

will consider concrete numbers, 𝑛 = 10 and 𝑡 = 3, without loss of

generality. We know that

• the suffix 𝑠8, 𝑠9, 𝑠10 is contained in 𝑂2,𝑂1,𝑂0, respectively

(by definition of the 𝑂 sequence), and that

• the 𝑈 sequence does not contain 𝑠7 (otherwise there would

be a transition to 𝑂2).

Let 𝑠𝑘 , 0 < 𝑘 < 8 be the state in the counterexample with the

highest index such that 𝑠𝑘 is not in the 𝑂 sequence (recall that

because the 𝑂 sequences are overapproximating, they can contain

more than just the above-mentioned 𝑠8 ...𝑠10). There must be such

an index 𝑘 , because otherwise the𝑈 sequence, which includes the

initial state 𝐼 , would be able to reach the 𝑂 sequence in one step —

a contradiction to our observation above that there is no transition

between the𝑈 and 𝑂 sequences at this point.

If the condition in line 22 holds, then 𝑂2 ⊆ 𝑂1 ∪𝑂0, and so we

have

𝑠𝑘 ∈ 𝑅−1 (𝑂0 ∪𝑂1 ∪𝑂2) ∧𝑂2 ⊆ 𝑂1 ∪𝑂0 ⇒
𝑠𝑘 ∈ 𝑅−1 (𝑂1 ∪𝑂0) ⇒ 𝑠𝑘 ∈ (𝑂2 ∪𝑂1) ,

(6)

which contradicts our assumption that 𝑠𝑘 is not in the 𝑂 sequence.

Hence, the condition in line 22 does not hold, which implies that

CAR returns “unsafe”. □

Note that the last implication in (6) is correct because of the

induction condition of the 𝑂 sequence, namely 𝑂𝑘+1 ⊇ 𝑅−1 (𝑂𝑘 ),
for 𝑘 ∈ [0..|𝑂 |−1]. We will see later in the article that this condition

no longer holds with our new methods, which breaks our proof

above and forces us to give up completeness. Subsection 3.4 will be

dedicated to this issue.

3 THREE WAYS TO COMBINE BMC AND CAR
In this section, we present three algorithms that we experimented

with, which can be seen as integrations of BMC and CAR.

3.1 BICAR: BMC-Initialized CAR
Recall from Sec. 2.3 that given a bound 𝑘 ≥ 1, BMC checks if

there exists a counterexample of length 𝑘 by solving the query

IsSat(𝐼 ∧ 𝑇𝑘 ∧ ¬𝑃). If the query is satisfiable, a counterexample

can be extracted from the satisfying assignment and the algorithm

terminates. Otherwise, 𝑘 is increased by one, and the procedure

repeats. In the latter case, an unsatisfiable core UC can be obtained

from the SAT solver, which is not used in standard BMC but can be

used to initialize the𝑂-sequence ofCAR and hence potentiallymake

it run faster. More specifically, the UC encompasses the reason that

the initial state cannot reach ¬𝑃 in 𝑘 steps. Therefore, the negation

of the UC is an over-approximation of the states that can reach ¬𝑃 ,
and we can leverage it in CAR to initialize the 𝑂-sequence. In this

way, CAR can be seen as an aid to BMC.
There is another way in which the initial BMC run can accelerate

CAR. If it times-out after proving that there is no counterexample

up to depth 𝑘 , thenCAR can be invoked by calling IsSat(𝐼∧𝑇 ∧𝑂𝑘 ),
in contrast to CAR which invokes IsSat(𝐼 ∧𝑇 ∧𝑂0). The reason is

that BMC already proved that a counterexample, if there is one, is

at least of length 𝑘 + 1.

The implementation of BICAR is described in Algorithm 2. It

takes a transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety property 𝑃

as the inputs. At Line 1, BICAR checks whether the set of initial

states intersects with the bad states. Then the over- and under-

approximating sequences of CAR as well as the bound 𝑘 in BMC
are initialized (Line 2). In the main loop (Lines 4-11), it checks

whether 𝐼 can reach ¬𝑃 in 𝑘 steps (Line 5). If not, a UC is obtained

from the SAT solver (Line 7) and its negation is assigned to the

corresponding frame𝑂𝑘 ofCAR (Line 8). If BMC’s run-time exceeds

the predefined time constraint 𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 , the loop breaks (Line

10) and CARcheck() is invoked (Line 12). As mentioned above,

CARcheck()starts by checking whether 𝐼 can reach 𝑂𝑛−1.
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Algorithm 2: BICAR: BMC-Initialized CAR

Input: A transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety

property 𝑃

Output: if terminates, “Unsafe" + a counterexample

1 if IsSat(𝐼 ∧ ¬𝑃) then return “Unsafe"

2 𝑈0 B 𝐼 , 𝑂0 B ¬𝑃 , 𝑘 B 1

3 𝑏𝑒𝑔𝑖𝑛 B 𝑐𝑙𝑜𝑐𝑘 ()
4 while true do
5 if SatAssume(𝐼 ,∧𝑚≤𝑘−1𝑇

(𝑚) ∧ ¬𝑃 (𝑘) ) then return
“Unsafe"

6 else
7 𝑢𝑐 B GetUnsatAssumptions()
8 𝑂𝑘 B ¬𝑢𝑐
9 𝑏𝑚𝑐_𝑡𝑖𝑚𝑒 B 𝑐𝑙𝑜𝑐𝑘 () − 𝑏𝑒𝑔𝑖𝑛

10 if 𝑏𝑚𝑐_𝑡𝑖𝑚𝑒 ≥ 𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 then break

11 𝑘++

12 CARcheck()
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Figure 2: BAC: BMC-aided CAR. Starting from 𝑠 ∈ 𝑈 , which is
also in 𝜑𝑛 , the ‘cloud’ in the figure represents a set of states
that CAR is struggling to get out of. The green path illustrates
that invoking BMC at this stage can find a path to some state
in 𝜑0, bypassing the search in the ‘cloud’.

3.2 BAC: BMC as an Aid for CAR
In Algorithm 1, after a state 𝑠 ∈ 𝑈 , which is also in 𝜑𝑛 , is selected at

Line 5, CAR checks whether 𝑠 can reach a successor in𝑂𝑛 by calling

the SAT query IsSat(𝑡 ∧𝑇 ∧𝑂 ′
𝑛), which essentially achieves the

transition from 𝜑𝑛 to 𝜑𝑛−1. If the query returns satisfiable, a new

state 𝑡 ∈ 𝜑𝑛−1 (∉ 𝜑𝑛) is obtained and then added to the𝑈 -sequence.

Afterwards, CAR checks if 𝑡 can transit to a certain state in 𝜑𝑛−2
by calling the SAT query IsSat(𝑡 ∧ 𝑇 ∧ 𝑂 ′

𝑛−1). In this procedure,

CAR tries to find a path from 𝑠 to ¬𝑃 by searching for states such

that they can transit out of the {𝜑} frame to which they belong.

In principle, a counterexample, if exists, has to contain at least

one state that belongs to each 𝜑𝑖 for 0 ≤ 𝑖 ≤ 𝑛. Therefore, a path

that cannot reach a certain 𝜑𝑖 , cannot become a counterexample.

Continuing the search on such paths can only waste time in CAR.
CAR’s search is based on backtracking upon failure while nar-

rowing the𝑂- and widening𝑈 - sequences. It is frequently the case

that this backtracking process gets ‘stuck’, i.e., all the states among

the path fall into the regions between𝜑 𝑗 and𝜑𝑖 (0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑂 |−1),
which is depicted as a ‘cloud’ in Fig. 2. Although states in the cloud

region can be fully explored in principle, it can be very time con-

suming. A better search strategy may be to attempt to escape this

region by unrolling the transition relation several times, like in

BMC.

Algorithm 3: BAC: BMC-aided CAR

Input: A transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety

property 𝑃

Output: if terminates, “Unsafe" + a counterexample

1 if IsSat(𝐼 ∧ ¬𝑃) then return “Unsafe"

2 𝑈0 B 𝐼 , 𝑂0 B ¬𝑃
3 while true do
4 𝑠𝑡𝑎𝑡𝑒 B PickState(𝑈 )
5 𝑂𝑡𝑚𝑝 B ¬𝑃
6 𝑠𝑡𝑎𝑐𝑘 B ∅; 𝑠𝑡𝑎𝑐𝑘.push(𝑠𝑡𝑎𝑡𝑒, |𝑂 | − 1, 1)
7 𝑐𝑜𝑢𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 B 0

8 𝑙𝑒𝑣𝑒𝑙 B |𝑂 | − 1

9 while |𝑠𝑡𝑎𝑐𝑘 | ≠ 0 do
10 (𝑠, 𝑙, 𝑢) B 𝑠𝑡𝑎𝑐𝑘.top()
11 𝑙𝑒𝑣𝑒𝑙 B min(𝑙, 𝑙𝑒𝑣𝑒𝑙)
12 if 𝑐𝑜𝑢𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 ≥ 𝑀𝑎𝑥_𝑛 then
13 𝑠𝑡𝑎𝑐𝑘.clear()
14 𝑢𝑛𝑟𝑜𝑙𝑙 B |𝑂 | − 𝑙𝑒𝑣𝑒𝑙 + 1

15 𝑠𝑡𝑎𝑐𝑘.push(𝑠𝑡𝑎𝑡𝑒, 𝑙𝑒𝑣𝑒𝑙 − 1, 𝑢𝑛𝑟𝑜𝑙𝑙)
16 else 𝑐𝑜𝑢𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠++
17 if 𝑙 < 0 then return “Unsafe"

18 if SatAssume(𝑠 (0) ,∧
0≤𝑚≤𝑢−1𝑇

(𝑚) ∧𝑂 (𝑢)
𝑙

) then
19 𝑀 B GetModel()
20 for 𝑖 = 1 . . . 𝑢 do
21 𝑡 (𝑖) B 𝑀 |𝑉 (𝑖 )

22 𝑈 𝑗+𝑖 B 𝑈 𝑗+𝑖 ∪ 𝑡
23 𝑠𝑡𝑎𝑐𝑘.push((𝑡 (𝑖) , 𝑙 + 𝑢 − 𝑖 − 1, 1))

24 else
25 𝑠𝑡𝑎𝑐𝑘.pop()
26 𝑢𝑐 B GetUnsatAssumptions()
27 if (𝑙 + 1 < |𝑂 |) then 𝑂𝑙+1 B 𝑂𝑙+1 ∧ (¬𝑢𝑐)
28 else 𝑂𝑡𝑚𝑝 B 𝑂𝑡𝑚𝑝 ∧ (¬𝑢𝑐)
29 if 𝑙 + 1 < |𝑂 | then 𝑠𝑡𝑎𝑐𝑘.push(𝑠, 𝑙 + 1, 𝑢)

30 Add a new state-set to 𝑂 and initialize it to 𝑂𝑡𝑚𝑝

Specifically, we can check if 𝑠 can reach 𝜑𝑖−1 in 𝑘 steps, while

bypassing the states between them, by checking the satisfiability of

𝑠 (0) ∧∧
0≤𝑚≤ 𝑗−𝑖 𝑇

(𝑚) ∧𝑂 ( 𝑗−𝑖+1)
𝑖

. (7)

If the query is satisfiable, a list of new states can be extracted from

the satisfiable assignment, corresponding to the path from 𝑠 to 𝑂𝑖
(see Line 20 in Algorithm 3). Otherwise, 𝑠 can be blocked by adding

the corresponding UC to the𝑂-sequence and then CAR can switch

to another state in 𝜑 𝑗 .
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Figure 3: K-CAR: Computing the 𝑘-step successor inside CAR.
Starting from 𝑠 ∈ 𝑈 , which is also in 𝜑𝑛 , once a one-step suc-
cessor in 𝜑𝑛−1 cannot be found by CAR, BMC is then invoked
to check whether a 𝑘 (𝑘 ≥ 2)-step successor can be detected
in 𝜑𝑛−1 (represented by the green path).

As shown in Algorithm 3, BAC has several differences from

CAR. The stack is used to store 3-tuples: in addition to the state

and the 𝑂-sequence frame level as in CAR, it also stores the un-

rolling level. BAC uses two variables, 𝑐𝑜𝑢𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 and 𝑙𝑒𝑣𝑒𝑙 , to

respectively record the number of searched states (Line 7) and the

smallest𝑂-sequence frame level that has ever been reached (Line 8).

When the maximal states number is reached, i.e., 𝑐𝑜𝑢𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 ≥
𝑀𝑎𝑥_𝑛 (Line 12), BAC clears the stack and pushes a new triple

(𝑠𝑡𝑎𝑡𝑒, 𝑙𝑒𝑣𝑒𝑙 − 1, 𝑢𝑛𝑟𝑜𝑙𝑙) into the stack (Lines 13-15), hence search-

ing for a successor in 𝑢𝑛𝑟𝑜𝑙𝑙 steps, where 𝑢𝑛𝑟𝑜𝑙𝑙 = |𝑂 | − 𝑙𝑒𝑣𝑒𝑙 + 1.

3.3 K-CAR: Computing the 𝑘-step Successor
inside CAR

CAR invokes a SAT solver to check if there is a one-step successor of
𝑠 in a certain𝑂𝑛 , i.e., the corresponding query is IsSat(𝑠 ∧𝑇 ∧𝑂 ′

𝑛).
If the SAT solver returns ‘satisfiable’, a new state 𝑡 ∈ 𝑂𝑛 is extracted

and then CAR recursively checks if 𝑡 can reach some state in 𝑂𝑛−1
in one step. However, if a certain SAT query is unsatisfiable, CAR
backtracks to the previous state or picks another state from the 𝑈 -

sequence. For example, if IsSat(𝑡 ∧𝑇 ∧𝑂 ′
𝑛−1) is unsatisfiable, then

the negation of𝑢𝑐 , where𝑢𝑐 ⊆ 𝑡 , is added to𝑂𝑛 andCAR backtracks

to check if IsSat(𝑠 ∧𝑇 ∧𝑂 ′
𝑛) holds. Although IsSat(𝑡 ∧𝑇 ∧𝑂 ′

𝑛−1)
is unsatisfiable, IsSat(𝑡 (0) ∧𝑇 (0) ∧𝑇 (1) ∧𝑂 (2)

𝑛−1) may be satisfiable,

which means that 𝑡 can reach 𝑂𝑛−1 in 2 steps. In this case, the

recursive procedure can proceed further.

Motivated by the example above, K-CAR computes 𝑘-step suc-

cessors for the given state. The key difference is the action taken

when an unsatisfiable result is returned from the SAT solver. In-

stead of directly selecting another state from the 𝑈 -sequence and

then going through the same procedure again, we use BMC to

check if the state can reach the frame in 𝑘 (𝑘 > 1) steps. We start

with 𝑢𝑛𝑟𝑜𝑙𝑙 = 2 and then increase it until a satisfiable result is

returned or the given maximal unrolling level is reached, as demon-

strated in Fig. 3. If the state 𝑠 ∈ 𝜑𝑛 cannot reach some state of

𝜑𝑛−1 in one step, i.e., IsSat(𝑠 ∧ 𝑇 ∧ 𝑂 ′
𝑛) is unsatisfiable, we in-

voke BMC to check if 𝑠 can reach 𝜑𝑛−1 in 2 steps (i.e., we solve

IsSat(𝑠 (0)∧𝑇 (0)∧𝑇 (1)∧𝑂 (2)
𝑛 )). If the result is satisfiable, we obtain

Algorithm 4: K-CAR: Computing the 𝑘-step Successor

inside CAR
Input: A transition system 𝑆𝑦𝑠 = (𝑉 , 𝐼,𝑇 ) and a safety

property 𝑃

Output: if terminates, “Unsafe" + a counterexample

1 if IsSat(𝐼 ∧ ¬𝑃) then return “Unsafe"

2 𝑈0 B 𝐼 , 𝑂0 B ¬𝑃
3 while true do
4 𝑠𝑡𝑎𝑡𝑒 B PickState(𝑈 )
5 𝑂𝑡𝑚𝑝 B ¬𝑃
6 𝑠𝑡𝑎𝑐𝑘 B ∅
7 𝑠𝑡𝑎𝑐𝑘.push(𝑠𝑡𝑎𝑡𝑒, |𝑂 | − 1, 1)
8 while |𝑠𝑡𝑎𝑐𝑘 | ≠ 0 do
9 (𝑠, 𝑙, 𝑢) B 𝑠𝑡𝑎𝑐𝑘.top()

10 if 𝑙 < 0 then return “Unsafe"

11 if SatAssume(𝑠 (0) ,∧
0≤𝑚≤𝑢−1𝑇

(𝑚) ∧𝑂 (𝑢)
𝑙

) then
𝑀 B GetModel()

12 for 𝑖 = 1..𝑢 do
13 𝑡 (𝑖) B 𝑀 |𝑉 (𝑖 )

14 𝑈 𝑗+𝑖 B 𝑈 𝑗+𝑖 ∪ 𝑡
15 𝑠𝑡𝑎𝑐𝑘.push(𝑡, 𝑙 + 𝑢 − 𝑖 − 1, 1)
16 else
17 𝑠𝑡𝑎𝑐𝑘.pop()
18 𝑢𝑐 B GetUnsatAssumptions()
19 if 𝑙 + 𝑢 < |𝑂 | then 𝑂𝑙+𝑢 B 𝑂𝑙+𝑢 ∧ (¬𝑢𝑐) else

𝑂𝑡𝑚𝑝 B 𝑂𝑡𝑚𝑝 ∧ (¬𝑢𝑐)
20 if 𝑢 < 𝑀𝑎𝑥𝑈𝑛𝑟𝑜𝑙𝑙 then 𝑠𝑡𝑎𝑐𝑘.push(𝑠, 𝑙, 𝑢 + 1)
21 else if 𝑙 + 1 < |𝑂 | then 𝑠𝑡𝑎𝑐𝑘.push(𝑠, 𝑙 + 1, 𝑢)

22 Add a new state-set to 𝑂 and initialize it to 𝑂𝑡𝑚𝑝

a new state in 𝜑𝑛−1 and recursively check if 𝜑𝑛−2 can be reached;

Otherwise, the unrolling procedure continues until a satisfiable

result is returned or the given maximal unrolling level is reached.

The K-CAR procedure is described in Algorithm 4.

K-CAR’s code is different than CAR in several places. First, like

BAC, the stack stores triples with the form (𝑠, 𝑙, 𝑢), where 𝑠 is a
state, 𝑙 is a frame level of the𝑂-sequence and𝑢 is the corresponding

BMC unrolling level – see initialization in Line 6.

Second, as can be seen in Line 11, we check whether 𝑠 can reach

frame 𝑂𝑙 in 𝑢 steps, rather than a single step in CAR. If the result
is satisfiable, we extract the 𝑢-long path from the model (Line 13),

and add the corresponding states to the 𝑈 -sequence (Line 14). By

pushing, in line 15, a new triple (𝑡, 𝑙 + 𝑢 − 𝑖 + 1, 1) to the stack we

essentially check if 𝑡 (𝑖) can reach the corresponding frame of the

𝑂-sequence in one step.

Finally, if the SAT query is unsatisfiable and 𝑢 ≤ 𝑀𝑎𝑥𝑈𝑛𝑟𝑜𝑙𝑙 ,

we invoke BMC by pushing a new triple (𝑠, 𝑙, 𝑢 + 1) to the stack

(Line 20), in order to find out whether 𝑠 can reach 𝑂𝑙 in 𝑢 + 1 steps.

3.4 About Completeness
The induction condition of CAR (see Def. 1), namely that for 𝑖 ∈
0..|𝑂 |, 𝑂𝑖 ⊇ 𝑅−1 (𝑂𝑖−1), does not hold with K-CAR, because of the
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𝑈𝐶 that is removed from multiple𝑂 frames in line 19. For example,

if 𝑂3 cannot be reached from state 𝑠 in 1 and 2 steps, then 𝑠 (or a

generalization thereof provided by the𝑈𝐶) is removed from both

𝑂4 and 𝑂5. Suppose that a state 𝑡 ∈ 𝑂4 is also a successor of 𝑠 , i.e.,

𝑡 ∈ 𝑅(𝑠). Then by removing 𝑠 from 𝑂5, it is no longer the case that

𝑂5 ⊇ 𝑅−1 (𝑂4). This property is used in the completeness proof —

see Prop. 1 in Sec. 2.3. A similar problem occurs with BICAR and

BAC. We leave the challenge of making those algorithms complete

for future work.

4 EXPERIMENTS
We implemented the three strategies described in the previous

section in SimpleCAR [24], a simple but efficient implementation of

the CAR algorithms. For this purpose we also implemented BMC
inside SimpleCAR. We take BMC and CAR as the baseline for our

experimental evaluation. We concentrate mainly on two aspects:

whether those strategies can outperform BMC and CAR on finding

bugs, and whether those three strategies can uniquely solve cases

that cannot be solved by CAR and BMC. Our evaluation was based

on 438 benchmarks in the Aiger [11] format from the single safety

property track of the 2015 and 2017 Hardware-Model-Checking

Competition
2
. All the counterexamples that our implementation

found were successfully verified with the third-party tool aigsim

that comes with the Aiger package
3
.

We ran the experiments on a cluster running RedHat 4.8.5 with

240 nodes; each node is equipped with a 2.5Ghz Intel Xeon CPU

with 96GB of RAM. The memory was limited to 8 GB and the time

was limited to 1 hour.

In the rest of this section, we first give an overall experimental

evaluation of the three strategies with selected parameters, and

then an evaluation of each of those strategies in more depth, with

a larger set of parameter values, to examine their effect. The arti-

facts (including all implementations and experimental results) are

available at [1].

Since the three strategies depend on various parameters (e.g., the

maximum BMC running time𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 in BICAR, the maximum

number of states𝑀𝑎𝑥_𝑛 in BAC and the maximum unrolling level

𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 in K-CAR), we experimented with several values to

tune them. The results below represent the best selected values. In

Fig. 4 the numerical elements in the strategies’ names (e.g., ‘BAC-
1500’) are the corresponding values of their parameters. As can be

seen in the figure, BAC with 𝑀𝑎𝑥_𝑛 = 1500 can solve 161 cases,

compared to 145 and 148 cases solved by BMC and CAR, respec-
tively. Moreover, it can uniquely solve 7 cases that cannot be solved

by BMC and CAR.
BICAR with𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 = 30 minutes (i.e., the time dedicated to

the first phase of this algorithm) can solve 156 cases, 3 of which

cannot be solved by BMC and CAR. As for K-CAR, when we set

𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 to 5, although the solved cases numbers are almost the

same as that of CAR, it can uniquely solve 5 cases that BMC and

CAR cannot. Fig. 4 shows also a virtual best solver (VBS), based on

all columns in the figure. It can solve 172 cases. The ‘overall’ column

adds up the results of BICAR, BAC and K-CAR in the figure. The

2
There were 311 additional benchmarks in that set that we removed, since they were

known to be safe and here we only focus on bug-finding.

3
http://fmv.jku.at/aiger/
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Figure 4: Number of benchmarks solved by different strate-
gies. Uniquely solved benchmarks are those that cannot be
solved by both BMC and CAR.

overall group solves 170 cases and uniquely solve 9 cases, and the

performance is quite close to VBS, which shows that our strategies

are competitive, and valuable in a parallel portfolio setting.

Detailed experimental results are shown in Tab. 1 and Fig. 5. Al-

though BAC-1500 solves less cases than ABC-BMC in the preceding

phase of the one hour experiment, BAC-1500 surpasses ABC-BMC
in the end. And the average time for BAC-1500 and ABC-BMC
are quite close. Tab. 2 shows a detailed comparison of the three

proposed algorithms. BAC-1500 can independently solve 7 cases

that cannot be solved by the rest two algorithms, with a smallest

average time.

For reference, we also tried the best-known BMC implementa-

tion, namely the one in ABC [13] running with the ‘bmc2’ command

(there are three different BMC implementations inside ABC, and
‘bmc2’ has the best performance based on [24]). It turns out that it

can solve 159 cases, so we can only say that BAC outperforms it,

slightly. However, all three algorithms solve some instances that

it does not. In the future we intend to integrate ABC-BMC inside

SimpleCAR. More details about the results appear below.
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Figure 5: Cactus plots comparing different approaches.

BICAR:. As we have discussed in Sec. 3.1, BICAR performs BMC for

a predefined time𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 in the first phase, and then performs

CAR in the second phase, starting from an 𝑂-sequence that is

initialized by data gathered during the first phase (specifically, by
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approach # solved time (sec) average time (sec)

BMC 145 2133120.83 4870.14

ABC-BMC 159 2023570.81 4620.02

CAR 148 2100015.21 4794.56

BAC-1500 161 2035522.22 4647.31

BICAR-30m 156 2076062.05 4739.87

KCAR-5 149 2108864.44 4814.76

Table 1: Detailed experimental results of different ap-
proaches. Timeout instances are given twice the time.

approach # solved

# independently solved

(compared to the other two approaches)

average time (sec)

BAC-1500 161 7 4647.31

BICAR-30m 156 4 4739.87

KCAR-5 149 2 4814.76

Table 2: Detailed comparison of the three proposed algo-
rithms, independently solved instances are compared to the
other two approaches. Timeout instances are given twice the
time.
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Figure 6: Number of benchmarks solved by BICAR. Uniquely
solved benchmarks are those that cannot be solved by BMC
and CAR.
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Figure 7: Number of benchmarks solved by BAC. Uniquely
solved benchmarks are those that cannot be solved by BMC
and CAR.

the negation of the unsatisfiable cores that were computed during

the first phase). In Fig. 6, we see the impact of different values of

𝑀𝑎𝑥_𝑡𝑖𝑚𝑒 .
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Figure 8: Number of benchmarks solved by K-CAR. Uniquely
solved benchmarks are those that cannot be solved by BMC
and CAR.

BAC:. Recall that in BAC,𝑀𝑎𝑥_𝑛 is the maximum number of states

that are allowed before invoking BMC unrolling to attempt to

escape from the current search location. Fig. 7 shows BAC’s per-
formance with𝑀𝑎𝑥_𝑛 assigned selected values in the range 500 to

3000.

As is shown in the figure, BAC can solve 161 cases and uniquely

solve 7 cases when𝑀𝑎𝑥_𝑛 is set to 1500. Therefore BAC can surpass

both BMC and CAR. Moreover BMC cannot solve 23 cases among

the 161 cases solved by BAC, which has also proved BAC’s value
from the perspective of diversity.

K-CAR:. In K-CAR, we can adjust the value of𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 to con-

trol the unrolling depth (𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 = 1 isCAR itself). Fig. 8 shows

the impact of this value.

More detailed results and graphs are available online in [2].

5 CONCLUSION
We presented three methods for integrating CAR and BMC, all
of which achieve better results on average than either of those

techniques on its own, and can solve instances that cannot be

solved by either of them. There are several directions for future

work. First, as mentioned above, we need to integrate SimpleCAR
with a state-of-the-art BMC solver. Second, we need to find a way

to replace the various constant parameters (e.g., 𝑀𝑎𝑥_𝑛 in BAC,
𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 in K-CAR) with a heuristic that adapts their value at

run time. For example, rather than assuming a constant value for

𝑀𝑎𝑥_𝑢𝑛𝑟𝑜𝑙𝑙 in K-CAR (the unrolling depth), it is better to adapt

its value at run time according to the actual difficulty of solving

the resulting BMC instance, which varies significantly between

different input models. Finally, it would be interesting to investigate

if such integration techniques are also relevant to IC3/PDR, and if

yes then check their effect on performance.
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