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Abstract—Formal-verification techniques, such as model
checking, are becoming popular in hardware design. SAT-based
model checking techniques, such as IC3/PDR, have gained a
significant success in the hardware industry. In this paper, we
present a new framework for SAT-based safety model checking,
named Complementary Approximate Reachability (CAR). CAR is
based on standard reachability analysis, but instead of maintain-
ing a single sequence of reachable-state sets, CAR maintains two
sequences of over- and under- approximate reachable-state sets,
checking safety and unsafety at the same time. To construct the
two sequences, CAR uses standard Boolean-reasoning algorithms,
based on satisfiability solving, one to find a satisfying cube of
a satisfiable Boolean formula, and one to provide a minimal
unsatisfiable core of an unsatisfiable Boolean formula. We applied
CAR to 548 hardware model-checking instances, and compared
its performance with IC3/PDR. Our results show that CAR is
able to solve 42 instances that cannot be solved by IC3/PDR.
When evaluated against a portfolio that includes IC3/PDR and
other approaches, CAR is able to solve 21 instances that the
other approaches cannot solve. We conclude that CAR should
be considered as a valuable member of any algorithmic portfolio
for safety model checking.

I. INTRODUCTION

Model checking is a fundamental methodology in formal

verification and has received more and more concern in

the hardware design community [1], [2]. Given a system

model M and a property P , model checking answers the

question whether P holds for M . When P is a linear-time

property, this means that we check that all behaviors of

M satisfy P , otherwise a violating behavior is returned as

a counterexample. In the recent hardware model checking

competition (HWMCC) [3], many benchmarks are collected

from the hardware industry. Those benchmarks are modeled

by the aiger format [4], in which the hardware circuit and

properties (normally the outputs of the circuit) to be verified

are both included. For safety checking, it answers the question

whether the property (output) can be violated by feeding the

circuit an arbitrary (finite) sequence of inputs. In this paper,

we focus on the topic of safety model checking.

Popular hardware model checking techniques include

Bounded Model Checking (BMC) [5], Interpolation Model

Checking (IMC) [6] and IC3/PDR [7], [8]. BMC reduces the

search to a sequence of SAT calls, each of which corresponds

to the checking in a certain step. The satisfiability of one of

such SAT calls proves the violation of the model to the given

The full version is available at https://arxiv.org/abs/1611.04946.
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property. IMC combines the use of Craig Interpolation as an

abstraction technique with the use of BMC as a search tech-

nique. IC3/PDR starts with an over-approximation, gradually

then refined to be more and more precise [7], [8]. All of the

three approaches have proven to be highly scalable, and are

today parts of the algorithmic portfolio of modern symbolic

model checkers, e.g. ABC [9].

We present here a new SAT-based model checking

framework, named Complementary Approximate Reachability
(CAR), which is motivated both by classical symbolic reach-

ability analysis and by IC3/PDR as an abstraction-refinement

technique. While standard reachability analysis maintains a

single sequence of reachable-state sets, CAR maintains two

sequences of over- and under-approximate reachable-state

sets, checking safety and unsafety at the same time. While

IC3/PDR also checks safety and unsafety at the same time,

CAR does this more directly by keeping an over-approximate

sequence for safety checking, and an under-approximate se-

quence for unsafety checking. To compute these sequences,

CAR utilizes off-the-shelf Boolean-reasoning techniques for

computing Minimal Unsat Core (MUC) [10], in order to

refine the over-approximate sequence, and Minimal Satisfying
Cube (i.e., partial assignment) [11], in order to extend the

under-approximate sequences. In contrast, IC3/PDR uses a

specialized technique, called generalization, to compute Mini-
mal Inductive Clauses (MIC) [7]. Thus, IC3/PDR computes

relatively-inductive clauses to refine the over- approximate

state sequence, while CAR does not. Because of this differ-

ence, CAR and IC3/PDR are complementary, with CAR faster

on some problem instances where refining by non-relatively-

inductive clauses is better, and IC3/PDR faster on others where

refining by relatively-inductive clauses is better.

To evaluate the performance of CAR, we benchmarked it

on 548 problem instances from the 2015 Hardware Model-

Checking Competition, and compared the results with IC3/

PDR. The results show that while the performance of CAR

does not dominate the performance of IC3/PDR, CAR comple-

ments IC3/PDR and is able to solve 42 instances that IC3/PDR

cannot solve. When evaluated against a portfolio that includes

IC3/PDR, BMC, and IMC, CAR is able to solve 21 instances

that the other approaches cannot solve. It is well known that

there is no “best” algorithm in model checking; different

algorithms perform differently on different problem instances

[12], and a state-of-the-art tool must implement a portfolio of

different algorithms, cf. [9]. Our empirical results also support
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the conclusion that CAR is an important contribution to the

algorithmic portfolio of symbolic model checking.

II. PRELIMINARIES

A. Boolean Transition System, Safety Verification and Reach-
ability Analysis

A Boolean transition system Sys is a tuple (V, I, T ), where

V is a set of Boolean variables, and every state s of the system

is in 2V , the set of truth assignments to V . I is a Boolean

formula representing the set of initial states. Let V ′ be the

set of primed variables (a new copy) corresponding to the

variables of V , then T is a Boolean formula over V ∪ V ′,
denoting the transition relation of the system. Formally, for

two states s1, s2 ∈ 2V , s2 is a successor state of s1, denoted

as (s1, s2) ∈ T , iff s1∪ s′2 |= T , where s′2 is a primed version

of s2.

A path (of length k) in Sys is a finite state sequence

s1, s2, . . . , sk, where each (si, si+1)(1 ≤ i ≤ k − 1) is in

T . We use the notation s1 → s2 → . . . → sk to denote a path

from s1 to sk. We say that a state t is reachable from a state

s, or that s reaches t, if there is a path from s to t. Moreover,

we say t is reachable from s in i steps (resp., within i steps)

if there is a path from s to t of length i (resp., of length at

most i).
Let X ⊆ 2V be a set of states in Sys. We define

R(X) = {s′|(s, s′) ∈ T where s ∈ X}, i.e., R(X) is

the set of successors of states in X . Conversely, we define

R−1(X) = {s|(s, s′) ∈ T where s′ ∈ X}, i.e., R−1(X) is

the set of predecessors of states in X . Recursively, we define

R0(X) = X and Ri(X) = R(Ri−1(X)) for i > 0. The

notations of R−i(X) is defined analogously.

Given a Boolean transition system Sys = (V, I, T ) and a

safety property P , which is a Boolean formula over V , the

system is called safe if P holds in all reachable states of Sys,

and otherwise it is called unsafe. The safety checking asks

whether Sys is safe. For unsafe systems, we want to find a

path from an initial state to some state s that violates P , i.e.,

s ∈ ¬P . We call such state reachable to ¬P a bad state, and

the path from I to ¬P a counterexample.

In symbolic model checking (SMC), safety checking is

performed via symbolic reachability analysis. From the set

I of initial states, we compute the set of reachable states by

computing Ri(I) for increasing values of i. We can compute

the set of states that can reach states in ¬P , by computing

(R−1)i(¬P ) for increasing values of i. The first approach is

called forward search, while the second one is called backward
search. The formal definition of these two approaches are

shown in the table below.

Forward Backward

Basic: F0 = I B0 = ¬P
Induction: Fi+1 = R(Fi) Bi+1 = R−1(Bi)
Terminate: Fi+1 ⊆ ⋃

0≤j≤i Fj Bi+1 ⊆ ⋃
0≤j≤i Bj

Check: Fi ∩ ¬P �= ∅ Bi ∩ I �= ∅
For forward search, the state set Fi is the set of states

that are reachable from I in i steps. This set is computed

by iteratively applying R. To find a counterexample, forward

search checks at every step whether one of the bad states has

been reached, i.e., whether Fi∩¬P �= ∅. If a counterexample is

not found, the search will terminate when Fi+1 ⊆ ⋃
0≤j≤i Fj .

For backward search, the set Bi is the set of states that

can reach ¬P in i steps. The workflow of backward search

is analogous to that of forward search. Note that forward

checking of Sys = (V, I, T ) with respect to P is equivalent

to backward checking of Sys−1 = (V,¬P, T−1) with respect

to ¬I , where T−1 is simply T , with primed and unprimed

variables exchanged.

B. Notations

Each variable a ∈ V is called an atom. A literal l is an atom

a or a negated atom ¬a. A conjunction of a set of literals, i.e.,

l1∧l2∧. . .∧lk, for k ≥ 1, is called a cube. Dually, a disjunction

of a set of literals, i.e., l1 ∨ l2 ∨ . . . ∨ lk, for k ≥ 1, is called

a clause. Obviously, the negation of a cube is a clause, and

vice versa. Let C be a set of cubes (resp., clauses), we define

the Boolean formula f(C) =
∨

c∈C c (resp., f(C) =
∧

c∈C c).
For simplicity, we use C to represent f(C) when it appears

in a Boolean formula; for example, the formulas φ ∧ C and

φ ∨ C, abbreviate φ ∧ f(C) and φ ∨ f(C).
A cube (/clause) c can be treated as a set of literals, a

Boolean formula, or a set of states, depending on the context

it is used. If c appears in a Boolean formula, for example,

c ⇒ φ, it is treated as a Boolean formula. If we say a set c1
is a subset of c2, then we treat c1 and c2 as literal sets. If we

say a state st is in c, then we treat c as a set of states.

We use s(x)/s′(x′) to denote the current/primed version

of the state s. Similarly, we use φ(x)/φ′(x′) to denote the

current/primed version of a Boolean formula φ. For the

transition formula T , we use the notation T (x, x′) to highlight

that it contains both current and primed variables. Consider a

Boolean formula φ whose alphabet is V ∪ V ′ and is in the

conjunctive normal form (CNF). If φ is satisfiable, there is

a full assignment A ∈ 2V ∪V ′
such that A |= φ. Moreover,

there is a partial assignment Ap ⊆ A such that for every

full assignment A′ ⊇ Ap it holds that A′ |= φ. In the

following, we use the notation pa(φ) to represent a partial

assignment of φ, and use pa(φ)|x to represent the subset of

pa(φ) achieved by projecting variables only to V . On the other

hand, if φ is unsatisfiable, there is a Minimal Unsat Core
(MUC) C ⊆ φ (here φ is treated as a set of clauses) such

that C is unsatisfiable and every C ′ ⊂ C is satisfiable. In

the following, we use the notation muc(φ) to represent such

a MUC of φ, and use muc(φ)|c′ to represent the subset of

muc(φ) achieved by projecting clauses only to c′. Since c′ is

a cube, muc(φ)|c′ is also a cube.

III. THE FRAMEWORK OF CAR

We present here a variant of standard reachability check-

ing, in which the set of maintained states is allowed to be

approximate. The new approach is named Complementary
Approximate Reachability, abbreviated as CAR. As in standard

reachability analysis, CAR also enables both forward and

backward search. In the following, we introduce the forward
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approach in detail; the backward approach can be derived

symmetrically.

A. Approximate State Sequences

In standard forward search, described in Section II, each

Fi is a set of states that are reachable from I in i steps.

To compute elements in Fi+1, previous SAT-based symbolic-

model-checking approaches consider the formula φ = Fi(x)∧
T (x, x′), and use partial-assignment techniques to obtain all

states in Fi+1 from φ (by projecting to the prime part of the

assignments). Since the set of reachable states is computed

accurately, maintaining a sequence of sets of reachable states

from I enables to check both safety and unsafety. However in

Forward CAR, two sequences of sets of reachable states are

necessary to maintain: 1). (F0, F1, . . .) is a sequence of over-

approximate state sets, which are supersets of reachable states

from I . 2) (B0, B1, . . .) is a sequence of under-approximate

state sets, which are subsets of reachable states to ¬P . Under

the approximation, the first sequence is only sufficient to check

safety, and the second one is then required to check unsafety.

The two state sequences are formally defined as follows.

Definition 1: For a Boolean system Sys and the

safety property P , the over-approximate state sequences

(F0, F1, . . . , Fi) (i ≥ 0), which is abbreviated as F -

sequence, and the under-approximate state sequence

(B0, B1, . . . , Bk)(k ≥ 0), which is abbreviated as B-

sequence, are finite sequences of state sets such that:
Basic F0 = I B0 = ¬P
Constraint Fj ⊆ P (0 ≤ j) –

Inductive Fj+1 ⊇ R(Fj)(j ≥ 0) Bj+1 ⊆ R−1(Bj)(j ≥ 0)

For each Fi(i ≥ 0), we call it a frame. We also define the

notation S(F ) =
⋃

0≤j≤i Fj is the set of states in the F -

sequence, and S(B) =
⋃

0≤j≤k Bj is the set of states in the

B-sequence.

Note that the F - and B-sequence are not required to have

the same length. Intuitively, each Fi+1 is an over-approximate

set of states that are reachable from Fi in one step, and Bi+1 is

an under-approximate set of states that are reachable to Bi in

one step. As we mentioned in Section II, we overload notation

and consider Fi to represent (1) a set of states, (2) a set of

clauses and (3) a Boolean formula in CNF. Analogously, we

consider Bi to be (1) a set of states, (2) a set of cubes and

(3) a Boolean formula in DNF.

The following theorem shows that, the safety checking is

preserved even if Fi(i ≥ 0) becomes over-approximate.

Theorem 1 (Safety Checking): A system Sys is safe for P
iff there is i ≥ 0 and an F -sequence (F0, F1, . . . , Fi, Fi+1)
such that Fi+1 ⊆ ⋃

0≤j≤i Fj .

Theorem 1 is insufficient for unsafety checking, as Fi+1 ⊆⋃
0≤j≤i Fj has to prove false for every i ≥ 0. On the other

hand, the unsafety checking condition ∃i · Fi ∩ ¬P �= ∅
in the standard forward reachability is not correct when Fi

becomes over-approximate. Our solution is to benefit from the

information stored in the B-sequence.

Theorem 2 (Unsafety Checking): For a system Sys and the

safety property P , Sys is unsafe for P iff there is i ≥ 0 and

a B-sequence (B0, B1, . . . , Bi) such that I ∩Bi �= ∅.

Besides, since CAR maintains two different sequences,

exploring the relationship between them can help to establish

the framework. The following property shows that, the states

stored in F - and B- sequences are unreachable when the

system Sys is safe for the property P .

Property 1: For a system Sys and the safety property P ,

Sys is safe for P iff there is an F -sequence such that S(F )∩
R−1(S(B)) = ∅ for every B-sequence.

Property 1 suggests a direction that how we can refine the

F -sequence and update the B-sequence. That is to try to make

the states in these two sequences unreachable. More details are

shown in the next section.

We have established the Forward CAR framework, and

presented the theoretical guarantee for both safety and unsafety

checking. Note that symmetrically, Backward CAR performs

the same framework on Sys−1 = (V,¬P, T−1) with respect

to ¬I , where T−1 is simply T with primed and unprimed

variables exchanged.

B. The Framework

Unlike the standard forward reachability, which computes

all states in Fi+1 from the single formula Fi(x) ∧ T (x, x′),
Forward CAR computes elements of Fi+1 from different SAT

calls with different inputs. Each SAT call gets as input a

formula of the form Fi(x)∧T (x, x′)∧ c′(x′), where the cube

c is in some Bj and c′ is its primed version. If the formula is

satisfiable, we are able to find a new state which is in Bj+1;

otherwise we prove that c∩R(Fi) = ∅, which indicates Fi+1

can be refined by adding the clause ¬c. The following lemma

shows the main idea of computing new reachable states to ¬P
and new clauses to refine Fi.

Lemma 1: Let (F0, F1, . . .) be an F -sequence, (B0, B1, . . .)
be a B-sequence, cube c1 ∈ Bj(j ≥ 0) and the formula φ be

Fi(x) ∧ T (x, x′) ∧ c1
′(x′)(0 ≤ i):

1) If φ is satisfiable, there is a cube c2 such that every state

t ∈ c2 is a predecessor of some state s in c1 and t ∈ Fi.

By updating Bj+1 = Bj+1 ∪ {c2}, the sequence is still

a B-sequence.

2) If φ is unsatisfiable, c1 ∩ R(Fi) = ∅. Moreover, there is

a cube c2 such that c1 ⇒ c2 and c2 ∩ R(Fi) = ∅. By

updating Fi+1 = Fi+1 ∪ {¬c2}, the sequence is still an

F -sequence.

In the lemma above, Item 1 suggests to add a set of states

rather than a single one to the B-sequence, and similarly Item

2 suggests to refine the F -sequence by blocking a set of states

rather than a single one. In both situations, it will speed up the

computation. These two kinds of heuristics can be achieved by

partial-assignment and MUC techniques. That is, we can set

c2 = pa(φ)|x in Item 1, and c2 = muc(φ)|c1′ in Item 2. Now,

we provide a general framework of CAR, which is shown in

Table I.

The motivation of the computation are simply twofold:

1) Enlarge the lengths of the F - and B-sequences step by

step (controlled by i in the framework); 2) For each i,
update both sequences until either the unsafety is detected

(Step 3(b)ii) or S(F ) ∩ R−1(B(F )) = ∅. From Property 1,
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TABLE I: The Framework of Forward CAR

1) Initially, set B0 = ¬P, F0 = I;
2) If F0 ∩B0 �= ∅ or R(F0) ∩B0 �= ∅, return unsafe with counterexample;
3) For i ≥ 1,

a) Set Fi := P ;
b) while S(F ) ∩R−1(S(B)) �= ∅

i) Let j be the minimal index such that Fj ∩R−1(Bk) �= ∅ for some k ≥ 0;
ii) If j = 0, return unsafe with counterexample;

iii) Let cube c1 = pa(Fj(x) ∧ T (x, x′) ∧Bk
′(x′))|x (From 3(b)i c1 must exist);

iv) Set Bk+1 := Bk+1 ∪ {c1} if Bk+1 exists, otherwise set Bk+1 := {c1};
v) Let φ = Fj−1(x) ∧ T (x, x′) ∧ c1′(x′);

vi) If φ is satisfiable, let c2 = pa(φ)|x then assert c2 �⊆ R−1(S(B)) and set Bk+2 := Bk+2 ∪ {c2} if Bk+2 exists,
otherwise set Bk+2 := {c2};

vii) If φ is unsatisfiable, let c2 = muc(φ)|c1′ then assert ¬c2 �⊇ Fj and set Fj := Fj ∪ {¬c2}.

c) If ∃0 ≤ j ≤ i · Fj ⊆ ⋃
0≤m≤j−1 Fm, return safe;

d) Set i = i+ 1;

S(F ) ∩ R−1(S(B)) is a necessary condition to prove safety

(in Step 3c). In Step 3(b)i, we choose the minimal index

because CAR aims to find a counterexample, if exists, as

soon as possible. The F - and B-sequence are not extended

synchronously: In each i, the F -sequence is extended only

once (in Step 3a), while the B-sequence is extended more

than once (in Step 3(b)iv and 3(b)vi). In Step 3c, the constraint

Fj ⊆
⋃

0≤m≤j−1 Fm can be checked by SAT solvers with the

input formula (Fj ∧
∧

0≤m≤j−1 ¬Fm). The constraint holds

iff the formula is unsatisfiable. S(F ) and S(B) are updated

by default when the F - and B-sequence are updated. The

correctness and termination of the framework are guaranteed

by the following theorem.

Theorem 3: Given a system Sys and a safety property P ,

the framework terminates with a correct result.

C. Related Work

There are two main differences between CAR and IC3/PDR.

First, IC3/PDR requires the F -sequence to be monotone,

while CAR does not. Because CAR keeps the F -sequence

non-monotone, it does not require the push and propagate
processes, which are necessary in IC3/PDR. A drawback for

CAR is that additional SAT calls are needed to check safety,

i.e. to find i > 0 such that Fi+1 ⊆ ⋃
0≤j≤i Fj holds. In

IC3/PDR, since the F -sequence is monotone, it is easy to find

such i that Fi = Fi+1 syntactically.

Another main difference between CAR and IC3/PDR is

the way they refine the F -sequence. CAR utilizes the off-

the-shelf MUC techniques, while IC3/PDR puts more efforts

to compute MIC such that the refined F -sequence is still

monotone. Moreover, MIC are relatively inductive, while

clauses from MUC cannot guarantee. As a result, CAR and

IC3/PDR refines the F -sequence by different kinds of clauses,

and thus perform differently. Although computing relatively-

inductive clauses is proved to be efficient in IC3/PDR, we

show in the experiments that, CAR complements IC3/PDR on

the instances that computing relatively inductive clauses is not

conducive for efficient checking.

It is trivial to apply the framework of CAR in both forward

and backward directions by simply reversing the direction

of the model. Indeed, our implementation of CAR runs the

forward and backward modes in parallel. Although in theory

it is also possible to run IC3/PDR in backward mode, there

is a technical issue that must be addressed. In most IC3/PDR

implementations, the initial states I is considered as a single

cube. This helps to save a lot of SAT calls in the process of

generalization, in which the computed clause c must satisfy

I ∧ c is unsatisfiable. (When I is a cube it is reduced to

checking the containment of ¬c ⊆ I .) But usually the set

of unsafe states cannot be expressed by a single cube, which

makes it more complex to run IC3/PDR in a backward mode.

Indeed, the evaluation of IC3/PDR in the backward mode is

still an open topic.

CAR also maintains an under-approximate state sequence

(B-sequence) to check unsafety, while IC3/PDR checks un-

safety “on-the-fly”. Other papers also introduced multiple

state sequences. The approach of “Dual Approximated Reach-

ability” maintains two over-approximate state sequences to

check safety in both forward and backward directions [13]. In

contrast, we maintain two complementary (over- and under-)

approximate state sequences to check safety and unsafety at

the same time. In [14], states reachable from initial states are

maintained to help to handle proof-obligation generation. In

contrast, the B-sequence keeps states that reach bad states.

In PD-KIND [15], the idea of keeping both over- and under-

approximate (F- and B-) state sequences is also introduced,

and the B-sequence is used to refine the F-sequence as well.

However, CAR utilizes the F-sequence for safety checking

and B-squence for unsafey checking, while PD-KIND utilizes

the F-sequence for unsafety checking and another “induction

frame” has to be introduced for the safety checking. Moreover,

CAR and PD-KIND use very different underlying techniques:

CAR uses MUC and partial assignment, while PD-KIND uses

interpolation and generalization.

IV. EXPERIMENTS

Experimental Setup In this section, we report the re-

sults of the empirical evaluation. Our (C++) model checker

CARchecker1 runs CAR in both Forward and Backward

modes, using Minisat [16] and Muser2 [10] as the SAT and

MUC engines. The tool implements the algorithm from [11] to

extract partial assignments. The performance of CARchecker

1 https://github.com/lijwen2748/CARchecker
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Fig. 1: Overall performance among different approaches.

is tested by evaluating it on the 548 safety benchmarks from

the 2015 Hardware-Model-Checking Competition [3].

We first compared the performance of CAR with that

of IC3/PDR, as implemented in the state-of-the-art model

checker ABC [9] (the “pdr” command in ABC with default

parameters). It should be noted that, there are many variants of

IC3/PDR implementations currently, in which many heuristics

are applied to the original one [17]. We choose ABC as

the reference implementation for comparison because it is a

standard model checker integrating several kinds of SAT-based

model checking techniques. Moreover, a portfolio of modern

model checkers consists of IC3/PDR, BMC (Bounded Model

Checking), and IMC (Interpolation Model Checking), so we

also run the experiments of BMC and IMC in ABC to explore

the contribution of CAR compared to an existing portfolio (we

used the “bmc2” and “int” commands in ABC with default

parameters).

We run the experiments on a compute cluster that consists

of 2304 processor cores in 192 nodes (12 processor cores per

node), running at 2.83 GHz with 48GB of RAM per node. The

operating system on the cluster is RedHat 6.0. When we run

the experiments, each tool is run on a dedicated node, which

guarantees that no CPU or memory conflict with other jobs

will occur. Our tool CARchecker can run CAR in Forward

mode, Backward mode or combined mode, which returns the

best result from either of the approaches. In our experiments,

memory limit was set to 8 GB and time limit (CPU time) to

1 hour. Instances that cannot be solved within this time limit

are considered unsolved, and the corresponding time cost is

set to be 1 hour. We compare the model-checking results from

CARchecker with those from ABC on all benchmarks, and no

discrepancy is found.

Experimental Results We show first overall performance

comparison among different approaches in Fig. 1. Neither

Forward CAR nor Backward CAR by itself is currently

competitive with IC3/PDR. The reasons are as follows. First,

the implementation of CARchecker does not utilize the power

of incremental SAT computing, since the clauses to be added

to the SAT solver are from the output of MUC solvers; We do

not know of a way to combine them incrementally. In contrast,

incremental SAT calling is an important feature in IC3/PDR.

Secondly, ABC is a mature tool, incorporating many heuristics,

while CARchecker has only been in development for a few

months so it is not be surprising that ABC performs better. We

believe that the performance of CARchecker can be improved

in the future.

Nevertheless, CAR is able to compete with IC3/PDR when

combining the Forward and Backward modes. In Fig. 1, the

plotted line for “Combined CAR” is obtained from the best

results which selected from either Forward or Backward CAR:

Combined CAR solves a total number of 288 instances, while

IC3/PDR solves a total number of 271 instances. Moreover,

42 instances are solved only by Combined CAR. We view the

advantage of running CAR in both directions as one of the

contributions of this paper; it remains to be seen whether this

would also be an advantage for IC3/PDR.

Furthermore, if we consider important parameters that influ-

ence the performance, e.g., number of clauses and number of

frames, we get more positive results. Note that comparing the

number of SAT calls between Forward CAR and PDR is not

too informative, since Forward CAR also contains MUC calls.

So fewer SAT calls in Forward CAR does not mean lower cost.

Fig. 2 and Fig. 3 shows respectively the scatter plots between

Forward CAR and IC3/PDR on number of clauses and number

of frames. From the figures, Forward CAR does not generate

more clauses or more frames than IC3/PDR. In detail, 172

(175) instances are solved with fewer clauses (frames) by

Forward CAR than IC3/PDR, comparing with that 121 (118)

instances are solved with fewer clauses (frames) by IC3/PDR

than Forward CAR. Generally speaking, the number of clauses

and frames are positively correlated to the overall performance,

which indicates that Forward CAR should be competitive with

IC3/PDR, once CARchecker is as optimized as ABC.

Finally, we explore the contribution of CAR to the current

SAT-based model-checking portfolio, which includes BMC,

IMC and IC3/PDR. Fig. 1 shows the plots on the combinations

IC3/PDR+BMC+IMC, IC3/PDR+BMC+IMC+Forward CAR,

and IC3/PDR+BMC+IMC+Combined CAR. Forward CAR

adds 19 solved instances (all safe models) to the combination

of IC3/PDR+BMC+IMC, and Backward CAR solves another

two (1 safe and 1 unsafe model). Although BMC solves

the most unsafe cases (116), there are three unsafe instances

solved only by IC3/PDR and one unsafe instance solved

only by Backward CAR. For safe models, the number of

solved instances only by IC3/PDR, IMC, Forward CAR and

Backward CAR are 13, 12, 19, 1, respectively.

In summary, we conclude from our experimental results

that 1) Forward CAR complements IC3/PDR on checking

safe models; 2) Running CAR in both directions improves the

performance, and 3) CAR contributes to the current portfolio

of model checking strategies. We expect these conclusions to

be strengthened as the development of CARchecker matures.

V. CONCLUDING REMARKS

CAR is inspired by IC3/PDR, but it differs from it in some

crucial aspects. A main difference between CAR and IC3/PDR
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is that CAR does not require the F -sequence to be monotone.

Also CAR uses a different strategy (MUC) to refine the F -

sequence than IC3/PDR. Furthermore, CAR combines its over-

approximate and under-approximate searches in both forward

and backward modes. Due to these differences, CAR and

IC3/PDR have different performance profiles. Our experiments

show that IC3/PDR and CAR complement each other. The

fact that our new tool, after a few months of development,

outperforms mature tools that have been under development

for many years over a non-negligible fraction of the benchmark

suite, speaks to the merit of the new approach.

Furthermore, the area of SAT-based model checking is still

a very active research topic. Many improvements to IC3/PDR

have been proposed since the first published paper [7]. For

example, a recent development is the combination of IC3/PDR

with IMC in the Avy tool [18]. We believe that beyond the

CAR tool, the CAR framework is an important contribution

to this research area and will stimulate further research. For

example, it may be easier to combine IMC with CAR than

to combine IMC with IC3/PDR, as currently Avy has to pay

extra effort to convert the generated interpolation invariants to

be monotone, meeting the requirement to the state sequence

maintained by IC3/PDR, while CAR does away with this

monotonicity requirement.

To conclude, we presented here Complementary Approxi-
mate Reachability (CAR), a new framework for SAT-based

safety model checking. CAR checks at the same time for both

safety and unsafety in a more general way than IC3/PDR, and

uses a different technique to refine the over-approximate state

sequence. Experiments show that CAR complements IC3/PDR

and contributes to the current portfolio, which consists of

IC3/PDR, BMC and IMC. We argue therefore CAR is a

promising approach for safety model checking.
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